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Abstract: Massive correlated data with many inputs are often generated from computer experiments to
study complex systems. The Gaussian process (GP) model is a widely used tool for the analysis of computer
experiments. Although GPs provide a simple and effective approximation to computer experiments, two
critical issues remain unresolved. One is the computational issue in GP estimation and prediction where
intensive manipulations of a large correlation matrix are required. For a large sample size and with a
large number of variables, this task is often unstable or infeasible. The other issue is how to improve
the naive plug-in predictive distribution which is known to underestimate the uncertainty. In this article,
we introduce a unified framework that can tackle both issues simultaneously. It consists of a sequential
split-and-conquer procedure, an information combining technique using confidence distributions (CD), and
a frequentist predictive distribution based on the combined CD. It is shown that the proposed method
maintains the same asymptotic efficiency as the conventional likelihood inference under mild conditions, but
dramatically reduces the computation in both estimation and prediction. The predictive distribution contains
comprehensive information for inference and provides a better quantification of predictive uncertainty as
compared with the plug-in approach. Simulations are conducted to compare the estimation and prediction
accuracy with some existing methods, and the computational advantage of the proposed method is also
illustrated. The proposed method is demonstrated by a real data example based on tens of thousands of
computer experiments generated from a computational fluid dynamic simulator. The Canadian Journal of
Statistics 00: 000–000; 2020 © 2020 Statistical Society of Canada
Résumé: s expériences informatiques génèrent souvent des données corrélées massives avec de nombreuses
entrées pour étudier des systèmes complexes. Les processus gaussiens (PG) sont largement utilisés comme
outil pour leur analyse. Même si les PG offrent une approximation simple et efficace aux expériences
informatiques, ils présentent deux problèmes critiques non résolus. Le premier se trouve au niveau
computationnel dans l’estimation et les prévisions des PG qui nécessitent d’intenses manipulations de
grandes matrices de corrélation. Pour une taille d’échantillon élevée et un grand nombre de variables, cette
tâ che devient souvent instable, voire infaisable. L’autre problème réside dans l’amélioration de l’approche
naı̈ve de substitution de la distribution prédictive qui conduit à une sous-estimation de l’incertitude. Les
auteurs introduisent un cadre unifié qui peut régler ces deux problèmes simultanément. Il repose sur
une procédure séquentielle de type diviser pour régner, une technique de combinaison de l’information
utilisant les distributions de confiance (DC) et une distribution prédictive fréquentiste basée sur des DC
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combinées. Les auteurs montrent que la méthode proposée conserve la même efficacité asymptotique que
la vraisemblance conventionnelle sous des hypothèses raisonnables tout en réduisant substantiellement la
quantité de calcul nécessaire pour l’estimation et la prévision. La distribution prédictive comporte une
information complète pour l’inférence et une meilleure quantification de l’incertitude de prévision en
comparaison de l’approche de substitution. Les auteurs présentent des simulations comparant la justesse
de l’estimation et des prévisions par rapport aux méthodes existantes. Ils illustrent également l’avantage
computationnel de leur approche. Ils démontrent finalement l’usage de leur méthode en analysant des
données réelles de dizaines de milliers d’expériences informatiques provenant d’un simulateur numérique
portant sur la dynamique des fluides. La revue canadienne de statistique 00: 000–000; 2020 © 2020 Société
statistique du Canada

1. INTRODUCTION

A computer experiment refers to the study of a real system using mathematical models. It has
been widely used as an alternative to physical experiments, especially for studying complex
systems. In recent years, there has been a growing interest in analysing computer experiments by
Gaussian process (GP) models. GP models are simpler than real systems, but they still effectively
provide key summary information for mathematical systems (Sacks et al., 1989). Different from
the conventional applications of GPs in spatial statistics, analysis of computer experiments is
more complex and often involves more variables which creates new challenges in estimation and
prediction (Santner, Williams & Notz, 2003; Fang, Li & Sudjianto, 2006).

There are two critical issues in modelling computer experiments by GPs. First, given sample
size n, the estimation and prediction heavily involve manipulations of the n-by-n correlation
matrix, which require O(n3) computations and often result in singularities for large n (Kaufman,
Schervish & Nychka, 2008). This issue has been recognized in the literature, and the proposed
approaches can be characterized broadly as either changing the model to a low-rank model or
approximating the likelihood by imposing a sparsity constraint on the correlation matrix such
as tapering (Kaufman, Schervish & Nychka, 2008; Stein, 2013) and compact support (Gneiting,
2002; Stein, 2008; Kaufman et al., 2011). Examples of the former include Rue & Tjelmeland
(2002), Rue & Held (2005), Cressie & Johannesson (2008), Banerjee et al. (2008), Wikle
(2010), Chang et al. (2014); while approximation approaches include Stein, Chi & Welty (2004),
Snelson & Ghahramani (2005), Furrer, Genton & Nychka (2006), Fuentes (2007), Kaufman,
Schervish & Nychka (2008), Eidsvik et al. (2014), Gramacy & Apley (2015), Nychka et al.
(2015), Zhang, Lin & Ranjan (2018), Park & Apley (2018), Katzfuss (2017) and Sung et al.
(2019). The computational difficulty and numerical instability of GP are critical in analysing
computer experiments due to the large amount of unknown correlation parameters involved.

The second issue is how to accurately quantify the uncertainty in GP modelling. It is well
known that the predictive distributions constructed by substituting the true parameters by their
estimators, often called plug-in predictive distributions, underestimate the uncertainty (Santner,
Williams & Notz, 2003, p. 98). However, they are still widely used due to the lack of computa-
tionally efficient alternatives. Alternative approaches, such as bootstrap predictive distributions
(Sjöstedt-de Luna, 2003; Santner, Williams & Notz, 2003) and Bayesian procedures (Kennedy
& O’Hagan, 2001; Schmidt & O’Hagan, 2003) provide better quantification of uncertainty, but
they require intensive computation and typically are infeasible for high-dimensional problems
(Datta et al., 2016).

Although numerous methods have been proposed to address these issues, to the best of
our knowledge, they are developed for solving one of the issues. So our goal is to introduce
a unified framework based on GP models which can address both issues simultaneously. This
framework is called sequential split-conquer-combine (SSCC), which consists of a sequential
split-and-conquer procedure, an information combining technique using confidence distributions
(CDs), and a predictive distribution obtained based on combined CDs (Singh, Xie & Strawderman,
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2005; Yang et al., 2014; Liu, Liu & Xie, 2015; Schweder & Hjort, 2016). CDs are a frequentist
analogue of Bayesian posteriors. The CD-based approach does not require additional assumptions
on the prior, yet enjoys the flexibility of Bayesian approaches. We extend the CD development
to combine information from dependent sub-datasets and make prediction based on large spatial
data. Theoretical developments are provided to guarantee the statistical performance, including
consistency, coverage and efficiency, in both estimation and prediction of the proposed method.

The sequential split-and-conquer procedure reduces the computational complexity by splitting
the data into smaller subsets and allowing estimations to be performed on the subsets individually.
Although similar ideas of data splitting are discussed in the literature (e.g., Stein, 2013; Chen
& Xie, 2014; Mackey, Talwalkar & Jordan, 2015), information from individual subsets is often
assumed to be independent, which is invalid for GPs. In contrast, the proposed sequential
split-and-conquer procedure takes into account the data dependency among subsets by carefully
updating information sequentially from neighbourhood sets one at a time so that the data
information and thus the estimation efficiency is preserved. After splitting the data into subsets,
individual information from each subset is combined using a CD technique to get a combined
CD, which provides not only an efficient overall estimate but also a flexible tool for inference.
In addition, a predictive distribution is constructed based on the combined CD and it leads to an
easy-to-compute GP prediction method. Apart from the computational reduction, the proposed
framework provides combined estimates and predictions which are asymptotically equivalent
to the conventional ones under very mild conditions. Furthermore, it provides comprehensive
information for statistical inference and a better quantification of predictive uncertainty as
compared with the plug-in approach.

The remainder of this paper is organized as follows. In Section 1.1, we introduce the
commonly used GP models. The unified framework is introduced in Section 2. In Section 3, the
prediction procedure and its uncertainty quantification are discussed. Simulations are presented to
demonstrate the performance of the proposed framework in Section 4. In Section 5, the proposed
approach is applied to a data centre thermal management study. A summary and concluding
remarks are given in Section 6.

1.1. GP Models and Mathematical Notations
A GP model can be written as

y(x) = 𝜇(x) + Z(x), (1)

where y ∈ ℝ is the output, x ∈ ℝp is the input in a compact set, 𝜇(x) is the mean function
assumed to be 𝜇(x) = x⊤𝜷 with unknown parameters 𝜷 ∈ ℝp. Compared with 𝜇(x) = 0, known
as simple Kriging (Stein, 1999), the mean function 𝜇(x) = x⊤𝜷 can address non-stationarity
issues, provide better interpretability and improve prediction accuracy (Hung, 2011). Z(x) is a GP
with mean zero and covariance Cov(xi, x𝑗) = 𝜎2𝜙(xi, x𝑗 ;𝜽), where 𝜙(xi, x𝑗 ;𝜽) is the correlation
function and 𝜽 is a vector of unknown correlation parameters. Various correlation functions have
been considered in the literature, but we focus on a popular choice in computer experiments, a
product form of power exponential functions (Sacks et al., 1989; Gramacy & Apley, 2015;
Kaufman et al., 2011):

𝜙(xi, x𝑗 ;𝜽) =
p∏

k=1

Rk(|xik − x𝑗k|) = p∏
k=1

exp(−𝜃k|xik − x𝑗k|𝛼k ), (2)

where 0 < 𝛼k ≤ 2 is a tuning parameter and 𝜽 = (𝜃1,… , 𝜃p) with 𝜃k ≥ 0 for all k. Since the
correlation parameters 𝜃k’s are not constrained to be equal, the model can handle different
signals in each input dimension and thus (2) is particularly attractive to the analysis of computer
experiments. Note that in (2), given 𝜃k, the correlation decreases with the increase of |xik − x𝑗k|
DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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and the correlation is zero if |xik − x𝑗k| = ∞. Due to the product correlation structure, the
resulting Cov(xi, x𝑗) is zero as long as one of the dimension has zero correlation.

Given n realizations y = (y1,… , yn)⊤ and the corresponding inputs X = (x⊤1 ,… , x⊤n )
⊤ =

(V1,… ,Vp), where the vector Vk contains the values of the kth input variable, the joint
log-likelihood function for (1) can be written as

l(𝜷,𝜽, 𝜎) = − 1
2𝜎2

(y − X𝜷)⊤Σ−1(𝜽)(y − X𝜷) − 1
2

log |Σ(𝜽)| − n
2

log(𝜎2). (3)

Here, Σ(𝜽) is the n × n correlation matrix with the i𝑗th element equal to 𝜙(xi, x𝑗 ;𝜽). For each
given 𝜽, the maximum likelihood estimates (MLEs) of 𝜷 and 𝜎 can be obtained by

𝜷 = (X⊤Σ−1(𝜽)X)−1X⊤Σ−1(𝜽)y and 𝜎2 = (y − X𝜷)⊤Σ−1(𝜽)(y − X𝜷)∕n.

By maximizing the logarithm of the profile likelihood, the MLE of 𝜽 can be obtained by

𝜽̂ = arg max
𝜽

{n log(𝜎2) + log |Σ−1(𝜽)|}. (4)

For the estimation of correlation parameters 𝜽, there are some likelihood-based alternatives,
including the restricted maximum likelihood (Irvine, Gitelman & Hoeting, 2007) and robust
approaches based on a penalized likelihood (Li & Sudjianto, 2005). In this paper, we focus on
the study of MLEs but the results can be further extended to the likelihood-based alternatives.

When the parameters are known, the conditional distribution of y0 at a new input x0, given
the observations y, is normal with mean m0(𝜷,𝜽) and variance v0(𝜷,𝜽), where

m0(𝜷,𝜽) = x⊤0 𝜷 + 𝛾(𝜽)⊤Σ−1(𝜽)(y − X𝜷) and (5)

v0(𝜷,𝜽) = 𝜎2(1 − 𝛾(𝜽)⊤Σ−1(𝜽)𝛾(𝜽)), (6)

and 𝛾(𝜽) is an n × 1 vector with the ith element equal to 𝜙(xi, x0;𝜽). In practice, when the
parameters are unknown, the conventional plug-in approach constructs a predictive distribution
by replacing the true parameters by their MLEs. Therefore, the (estimated) plug-in predictive
distribution is normally distributed with mean m0(𝜷, 𝜽̂) and variance v0(𝜷, 𝜽̂).

Calculating the MLEs in (1.1) and (4) and also the GP predictors in (6) is computationally
intensive because the calculation requires manipulations of an n × n correlation matrix Σ, such
as Σ−1 and |Σ|, which are numerically highly unstable for moderate sample sizes with a larger
p and infeasible for large sample sizes. In addition, ignoring the parameter uncertainty in the
construction of plug-in predictive distribution clearly leads to an underestimation of predictive
uncertainty.

To reduce computational complexity of GP, a commonly used approach is the sparse matrix
technique which introduces zeros into the correlation matrix (Pissanetzky, 1984; Barry & Pace,
1999). Methods along this line, such as compactly supported correlation functions and covariance
tapering, have received increasing attention in the literature (Gneiting, 2002; Furrer, Genton &
Nychka, 2006; Kaufman, Schervish & Nychka, 2008; Kaufman et al., 2011; Bickel & Levina,
2008; Stein, 2008; 2013; Chu, Zhu & Wang, 2011). The compactly supported correlation
function introduces zeros into the correlation matrix by assuming

Rk(|xik − x𝑗k|) ∶= 0, if |xik − x𝑗k| ≥ 𝜏k, (7)
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for 𝜏k ≥ 0 and k = 1,… , p. The tuning parameters 𝜏k are called the range parameters. Another
commonly used approach is covariance tapering in which the covariance matrix is multiplied by
a tapering function defined by a single range parameter. For these tapering-type of methods, the
resulting estimates can display sizable bias when the range parameter is relatively smaller than
the truth (Kaufman et al., 2011). Therefore, larger values of 𝜏k are preferred for the purpose of
estimation despite that it leads to a significant increase of computational complexity.

2. SEQUENTIAL SPLIT-CONQUER-COMBINE FRAMEWORK

2.1. Overview
We introduce in this section a unified SSCC framework to tackle the aforementioned computing
and prediction uncertainty issues simultaneously. A diagram describing the SSCC framework
is shown in Figure 1 and it consists of two stages. The first stage is called split-and-conquer
and the second stage is called combine. The idea behind the split-and-conquer is to split the
data into m smaller subsets, 𝔻1,… ,𝔻m, which are disjoint but correlated, and then sequentially
update the data by removing the dependency. So the resulting new subsets, 𝔻∗

1,… ,𝔻∗
m, are

mutually independent. Detailed procedures on how to split the data are given in Section 2.2. Let
𝜓 be the collection of parameters in model (1). In the combine stage, individual estimates from
each subset, denoted by 𝜓̂1,… , 𝜓̂m, are combined via CDs (Singh, Xie & Strawderman, 2005;
Schweder & Hjort, 2016) and the combined estimate is denoted by 𝜓̂c.

In Section 2.2, the two stages are discussed for the estimation of 𝜷, which is a simplified case
assuming 𝜎 and the correlation parameters 𝜽 are known. A general procedure for the estimation
of all the unknown parameters is given in Section 2.3.

2.2. Estimation of 𝜷 When 𝜽 and 𝜎 are Known
We begin by illustrating the SSCC framework using a simple case where 𝜽 and 𝜎 are known.

Stage 1: sequentially split-and-conquer
A key idea of the proposed framework is to reduce computational complexity by splitting the
data into smaller subsets and allowing the estimation to be performed separately within each
smaller dataset. This concept is attractive and is discussed under various settings, including
spatial–temporal models (Stein, 2013), matrix factorization in machine learning (Mackey,
Talwalkar & Jordan, 2015), linear models (Lin & Xi, 2011; Schifano et al., 2016; Song & Liang,

FIGURE 1: Diagram of the SSCC procedure.
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2015) and penalized regressions (Chen & Xie, 2014; Tang, Zhou & Song, 2016). However,
most of the existing methods handle the splitted subsets separately and that they do not take
into account any dependency between subsets, which is crucial in the setting of GP models. If
the dependence is not accounted for, it will lead to a significant loss of efficiency in estimation.
Therefore, a sequential updating procedure is introduced to incorporate the dependency between
neighbouring subsets.

In the proposed framework, the full data y is first split into m disjoint subsets, (y1,… , ym),
according to the values of one of the input variables. Without loss of generality, we denote
this variable by the first variable V1. Theoretically, the results developed in this paper are valid
regardless of the choice of V1 (as long as, for the chosen variable, the correlation parameter
𝜃k > 0). In practice, we suggest conducting a preliminary regression analysis to select the
most significant variable as V1. Some detailed procedures on how to choose this variable
are illustrated in Section 5. Although not a necessary condition, to simplify our notations, we
assume that the range of each input variable is divided into equally spaced intervals and each
setting x is a point chosen from the regular grids. The number of subsets, m is defined by
m = ⌊M1∕𝜏⌋, where M1 = max (V1) − min (V1) is the range of the first variable and where 𝜏
is a tuning parameter closely connected to the range parameter in tapering. After sorting the
full data according to their values of V1, the disjoint subsets ya, where a = 1,… ,m − 1, are
obtained by the data with V1 ∈ [min (V1) + (a − 1)𝜏,min (V1) + a𝜏) and ym are obtained by the
data with V1 ∈ [min (V1) + (m − 1)𝜏,max (V1)]. The size of each subset ya is denoted by na and∑m

a=1 na = n. The na values are assumed to be of the same order so that each subset of the data
has sufficient information to obtain an accurate estimation. This assumption is valid if the data
are collected from space-filling designs (Santner, Williams & Notz (2003), Chapter 5).

After rearranging the data by variable V1 and splitting, the covariance matrix Σ can
then be decomposed into corresponding blocks indicating the within-subset correlations and
between-subset correlations:

Σ =
⎛⎜⎜⎜⎝
Σ11 Σ12 Σ13 · · · Σ1m
Σ21 Σ22 Σ23 · · · Σ2m

⋱ ⋱ ⋱
Σm1 Σm2 · · · Σm(m−1) Σmm

⎞⎟⎟⎟⎠n×n

,

where Σaa, a = 1,… ,m, captures the correlation within subset ya, and where Σab is a block
matrix capturing the correlations between subsets ya and yb, A block-wise tapering/thresholding
is applied in which the correlation matrix Σ is approximated by Σt as follows:

Σt =
⎛⎜⎜⎜⎝
Σ11 Σ12 O13 · · · O1m
Σ21 Σ22 Σ23 · · · O2m

⋱ ⋱ ⋱
Om1 Om2 · · · Σm(m−1) Σmm

⎞⎟⎟⎟⎠n×n

, (8)

where Oab’s are na-by-nb matrices with all zeros. That is, Σab is set to Oab = 0, if |a − b| ≥ 2.
Equivalently, the correlation between two observations that are not in the same or neighbouring
block(s) is set to be 0. By replacing Σ by Σt in the log-likelihood function (3), we have the
approximate log-likelihood function denoted by lt. This approximation is accurate and performs
well when Σab ≈ 0 holds for all |a − b| ≥ 2.

We would like to remark that the correlation matrix Σt brings in sparsity by introducing zeros
to the correlation matrix if the data are neither within the same subset nor in the neighbouring
subsets. Our method with tapering by blocks has three advantages over the existing tapering-type
of approaches. First, the sparsity assumption is only related to one variable, while the typical
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compactly supported correlation and tapering methods require the sparsity assumption on all
the variables as defined in (7). Second, the full correlation information between any two
neighbouring subsets is maintained in our Σt, while only partial information is maintained in
the usual multiple-variable tapering-type of correlation function. For example, in the tapering
approach discussed by Stein (2013), the off-diagonal matrices Σa,a+1 and Σa+1,a are assumed
to be zeros and none of the correlation information between neighbourhood are maintained.
Also, suppose that xi1, for i = 1,… , n are equally spaced. Then, the tapering assumption in
(7) with k = 1 (i.e., R1(|xi1 − x𝑗1|) = 0, if |xi1 − x𝑗1| > 𝜏, for range parameter 𝜏) corresponds to
the assumption that the off-diagonal matrices Σa,a+1 and Σa+1,a are lower and upper triangular
matrices instead of full matrices. Third, by working on the subsets of data, it is computationally
affordable for the proposed framework to use a larger 𝜏, compared with the typical tapering-type
of methods. This leads to a smaller loss of information and therefore provides a higher estimation
efficiency and accuracy.

We also would like to comment that (8) is a function of 𝜃 and it is not guaranteed to be
positive definite for all values of 𝜃 because it is a band matrix. In the search for the MLE for
𝜃, some values of 𝜃 can lead to negative correlation matrices. Techniques introduced in the
literature, such as Cai & Zhou (2420), can be applied to ensure a positive semi-definite correlation
matrix, but the implementations are often computationally intensive. In our numerical analysis,
we discard those 𝜃 values (often a small percentage) and only search within those values of 𝜃
that lead to positive definite correlation matrices.

We now transform y to y∗ = (y∗1,… , y∗m) by a sequential method to preserve the correlation
information in the neighbourhood blocks. Specifically, we sequentially update each subset as
follows:

y∗a = ya − La(a−1)y
∗
a−1, (9)

where L(a+1)a = Σ(a+1)aD−1
a , Da = Σaa − La(a−1)D(a−1)L

⊤
a(a−1), and where L(a+1)a and Da’s are

solved iteratively by initialing D1 = Σ11. The update of y∗a depends only on ya and y∗a−1, which
are small subsets; thus it involves only up to (na−1 + na) data points in this step and therefore is
easy to compute. This transformation is guided by the block LDL-decomposition (Fang, 2011).
The next lemma states that the subsets y∗a are mutually independent. All the proofs are given in
the Supplementary Material.

Lemma 1. After transformation, the covariance within each subset y∗a is Da and any two
subsets are mutually independent. That is, y∗ = (y∗1,… , y∗m) has covariance matrix D, where

D =
⎛⎜⎜⎝
D1 … O

⋱
O … Dm

⎞⎟⎟⎠ , L =
⎛⎜⎜⎜⎝

I O … O
L21 I … O
⋮ ⋮ ⋱ ⋮

Lm1 Lm2 · · · I

⎞⎟⎟⎟⎠ ,
and LDL⊤ = Σt, and where I’s are identity matrices.

We complete the split-and-conquer stage by analysing the individual subset data y∗a, for
a = 1,… ,m. For each individual subset y∗a, the log-likelihood function of y∗a can be written as

l(a)t (𝜷) = −1
2

log |Da| − 1
2𝜎2

(Ca𝜷 − y∗a)
⊤D−1

a (Ca𝜷 − y∗a),

where na × p matrix Ca = Xa +
∑a−1

b=1 BabXb, na × nb matrix Bab =
∏a

k=b+1(−Lk(k−1)), and na × p

matrix Xa is the design matrix corresponding to y∗a. By maximizing l(a)t (𝜷), we have the MLE of

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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𝜷 estimated from the ath subset as

𝜷a = arg max
𝜷

l(a)t (𝜷) = (C⊤
a D−1

a Ca)−1C⊤
a D−1

a y∗a. (10)

Since 𝜷a is linear in y∗a thus linear in y and Cov(y∗a) = Da by Lemma 1, we have S−1∕2
a (𝜷a − 𝜷) ∼

N(0, I), where Sa = Cov(𝜷a) = 𝜎2(C⊤
a D−1

a Ca)−1.

Stage 2: information combining via CDs
CD refers to any sample-dependent distribution function that can represent confidence intervals
or regions of all levels for a parameter of interest (e.g., Xie & Singh (2013); Schweder & Hjort
(2016)). Singh, Xie & Strawderman (2005) and Xie, Singh & Strawderman (2011) introduce
a general framework to combine information based on CDs for a univariate parameter, which
can subsume almost all information combining methods used in current practice. Liu, Liu &
Xie (2015) and Yang et al. (2014) extend the development to combine CDs of shared parameter
vectors from independent studies. However, the existing developments of combining information
based on CDs are for independent studies (or sub-datasets). The research in this paper is the first
effort to utilize the CD concept to combine information from dependent datasets (sub-datasets
split from partial data). In addition, this CD-based development also allows us to utilize and
devise a split-conquer and effective CD-based prediction approach, to be discussed in Section 3,
to handle prediction problems.

From (10), a resulting CD for 𝜷 in the ath subset, expressed in its density form, is

ha(𝜷) ∝ exp
[
− 1

2𝜎2
(𝜷a − 𝜷)⊤S−1

a (𝜷a − 𝜷)
]
.

That is, N(𝜷a, Sa) is a multivariate normal CD for 𝜷; see Singh, Xie & Strawderman (2007) and
Liu, Liu & Xie (2015) for the formal definition of multivariate normal CD. Then, following
Liu, Liu & Xie (2015) and also relevant discussions in section 4 of Singh, Xie & Strawderman
(2005), a combined point estimator of 𝜷 can be obtained by

𝜷c = arg max
𝜷

m∏
a=1

ha(𝜷). (11)

By a direct calculation, we have an explicit expression that 𝜷c = (
∑

Wa)−1(
∑

Wa𝜷a), where
Wa = C⊤

a D−1
a Ca is the weight matrix. Furthermore, the covariance of 𝜷c is Sc = Cov(𝜷c) =

(
∑

Wa)−1(
∑

WaSaWa)(
∑

Wa)−1 = 𝜎2(
∑

Wa)−1 = 𝜎2(X⊤Σ−1
t X)−1 and S−1∕2

c (𝜷c − 𝜷) ∼ N(0, I).
Again, by the definition of Singh, Xie & Strawderman (2007) and Liu, Liu & Xie (2015),
N(𝜷c, Sc) is a multivariate normal CD for 𝜷. We call N(𝜷c, Sc) a combined CD, and it is a
function on the space of 𝜷 and depends on the data in all subsets. Following Xie & Singh
(2013) and Schweder & Hjort (2016), statistical inference, such as constructing confidence
intervals/regions of 𝜷 or calculating p-values, can be easily obtained from the combined CD.

The following theorem shows that 𝜷c is asymptotically equivalent to 𝜷, the MLE obtained
based on (1.1) without splitting the data. A proof is provided in the Supplementary Material.

Theorem 1. Under the regularity conditions B in the Supplementary Material, the combined
estimator 𝜷c is a consistent estimator of 𝜷 and has the following asymptotic distribution:√

n(𝜷c − 𝜷)
D
→ N(0, S),

as n → ∞, where S = nCov(𝜷mle) = n𝜎2(X⊤Σ−1X)−1.
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2.3. Estimation of 𝜷, 𝜽 and 𝜎
We illustrate in this section the SSCC framework in a general setting in which both 𝜷 and 𝜽 are
unknown. The computation is more demanding as compared with the estimation of 𝜷 because the
MLEs can be obtained only by maximizing the likelihood (4) without a closed form expression
and the maximization involves intensive operations of large correlation matrices. Therefore, a
computationally efficient estimation procedure is even more critical. We extend the procedure
of Section 2.2 to the situation where 𝜽 is also unknown. The idea is to obtain the estimation of
𝜷 and 𝜽 by updating 𝜷|𝜽 and 𝜽|𝜷 iteratively. Here we describe one of the iterations with details
and the detailed algorithm is given in the Supplementary Material.

Starting from an estimate of 𝜽, denoted by 𝜽(t−1), 𝜷(t) can be estimated by the combined
estimator 𝜷c given in (11) with 𝜽 = 𝜽(t−1). Given 𝜷(t), a two-step procedure that is the analogue
to the one in Section 2.2 is implemented to obtain 𝜽(t). In Step 1, based on the same splitting
(y1,… ym), the sequential updating (9) is modified by

y∗a(𝜽) = ya − La(a−1)(𝜽)y∗a−1(𝜽),

where

La(a−1)(𝜽) = Σa(a−1)(𝜽)D−1
a−1(𝜽),

Da(𝜽) = Σaa(𝜽) − La(a−1)(𝜽)Da−1(𝜽)L⊤a(a−1)(𝜽).

In Step 2, the closed form expression of MLE in (10) is replaced by maximizing the likelihood

l(a)t (𝜽|𝜷(t)) = −1
2

log |Da(𝜽)| − 1
2𝜎2

(y∗a(𝜽) − Ca(𝜽)𝜷(t))⊤D−1
a (𝜽)(y∗a(𝜽) − Ca(𝜽)𝜷(t)),

where Ca(𝜽) = Xa +
∑a−1

b=1 Bab(𝜽)Xb, Bab(𝜽) =
∏a

k=b+1(−Lk(k−1)(𝜽)) and Xa is the design matrix
for ya. Note that the calculation of log-likelihood l(a)t depends only on the current subset y∗a,
previous subset y∗a−1, and the correlation between these two subsets and thus it is still easy to

compute. It is also clear that lt =
∑m

a=1 l(a)t . The estimate of 𝜽 from individual subset y∗a is denoted
by

𝜽̂a = arg min
𝜽

l(a)t (𝜽|𝜷)
and the combined estimate for 𝜽 can be calculated by

𝜽̂c =
( m∑

a=1

R−1
a

)−1( m∑
a=1

R−1
a 𝜽̂a

)
,

where Ra = −H−1
a (𝜽̂a) and Ha(⋅) is the ath Hessian matrix derived from l(a)t (𝜽|𝜷). Therefore,

given 𝜷(t), 𝜽(t) is updated by the combined estimator, that is, 𝜽(t) = 𝜽̂c. Following Singh, Xie &
Strawderman (2007) and Liu, Liu & Xie (2015) and similar to Section 2.2, an individual CD
from the ath block is N(𝜽̂a,Ra) and the combined CD is N(𝜽̂c, Sc), where Sc = (

∑m
a=1 R−1

a )−1. In
addition, after updating 𝜷(t) and 𝜽(t), 𝜎 is estimated by

𝜎2(t) = (y − X𝜷(t))⊤Σ−1
t (y − X𝜷(t))∕n =

m∑
a=1

𝜀∗⊤a D−1
a 𝜀∗a∕n,
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where Σt = Σt(𝜽(t)),D1 = Σ11, 𝜀
∗
1 = y1 − X1𝜷

(t) and, for a = 2,… ,m, we have 𝜀a = ya − Xa𝜷
(t),

La(a−1) = Σa(a−1)D
−1
a−1, 𝜀∗a = 𝜀a − La(a−1)𝜀

∗
a−1, Da = Σaa − La(a−1)Da−1L⊤a(a−1).

Despite the significant computational reduction, the combined estimators maintain desirable
asymptotic properties as the original MLE. This result is shown in the next theorem with a proof
given in the Supplementary Material.

Theorem 2. Under the regularity conditions in the Supplementary Material, the combined
estimator 𝝀̂c = (𝜷c, 𝜽̂c) is a consistent estimator of 𝝀 = (𝜷,𝜽) and asymptotically as efficient as
MLE 𝝀̂ = (𝜷, 𝜽̂) obtained from (1.1).

Kaufman, Schervish & Nychka (2008) point out that estimation based on tapering can
be biased. In fact, this can be an issue in most of the tapering-type of methods including
the compactly supported correlations and the current method. This is because, for example,

when 𝜷 = 0, we have E
{
𝜕{−lt(𝜽)}

𝜕𝜽

}
= E

{
1
2
tr(Σ−1

t Σ′
t) +

1
2
y′Σ1

t y
}
= 1

2
tr
(
Σ−1

t Σ′
t

)
− tr(Σ−1

t Σ′
tΣ

−1
t Σ)

= 1
2
tr(Σ1

t (Σ − Σt)) ≠ 0, where lt(⋅) denotes the log-likelihood function by compactly supported
correlation, Σ′

t = 𝜕Σt∕𝜕𝜽, Σ1
t = 𝜕Σ−1

t ∕𝜕𝜽 = −Σ−1
t Σ′

tΣ
−1
t . In our case, this bias is diminished

asymptotically, as stated in the following corollary whose proof can be found in the Supplementary
Material.

Corollary 1. Under the assumptions of Theorem 1, the combined estimator is asymptotically
unbiased.

3. PREDICTION AND UNCERTAINTY QUANTIFICATION

A CD-based predictive distribution is introduced in this section. It has two advantages. First, it
is constructed based on a modified GP predictor which overcomes the computational difficulty
often encountered in the conventional approach (6) yet maintains the same asymptotic efficiency.
Second, it provides comprehensive information for statistical inference and a better quantification
of prediction uncertainty as compared with the plug-in approach.

Based on the sequential split-and-conquer procedure and the combined estimates obtained
from Section 2.3, we propose to approximate the GP predictive mean and variance (6) by m1(𝜷,𝜽)
and v1(𝜷,𝜽) as follows:

m1(𝜷,𝜽) = x⊤0 𝜷 +
m∑

a=1

𝛾∗a (𝜽)
⊤D−1

a (𝜽)y∗a +
m∑

a=1

𝛾∗a (𝜽)
⊤D−1

a (𝜽)Ca(𝜽)𝜷, (12)

v1(𝜷,𝜽) = 𝜎2

(
1 −

m∑
a=1

𝛾∗a (𝜽)
⊤D−1

a (𝜽)𝛾∗a (𝜽)

)
, (13)

where 𝛾∗a (𝜽) = 𝛾a(𝜽) + La(a−1)(𝜽)𝛾∗a−1(𝜽), 𝛾a(𝜽) is the na × 1 vector with ith element equals to

𝜙(||xi − x0||;𝜽) where i =
∑a−1

b=1 nb + 1, · · · ,
∑a

b=1 nb. These two estimates enjoy the computa-
tional efficiency because their calculation involves only a small correlation matrix with size
na × na, a = 1,… ,m. The new predictive mean (12) and variance (13) have the following
asymptotic properties.

Theorem 3. Under the regularity conditions in the Supplementary Material, we have|m1(𝜷,𝜽) − m0(𝜷,𝜽)| → 0 and |v1(𝜷,𝜽) − v0(𝜷,𝜽)| → 0 in probability as n → ∞.

Theorem 3 shows that the new predictive mean (12) and variance (13) are asymptotically
equivalent to the conventional ones. This implies that the new predictor still enjoys the
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interpolation property asymptotically (i.e., the predictive variance for the observed data is
asymptotically zero), which is the most desirable feature of GPs in computer experiment
modelling (Santner, Williams & Notz (2003)).

To provide a better alternative to the plug-in predictive distribution, we construct a CD-based
predictive distribution which captures the parameter uncertainty using the combined CDs. The
CD-based predictive distribution is introduced by Shen, Liu & Xie (2018) under a general setting.
Here we extend the idea to GP models and construct a CD-based predictive distribution which
is not only more accurate but also easy to compute.

A CD-based predictive distribution function is defined by:

Q(y0; y) = ∫𝝀∈Θ G𝝀(y0)dFc(𝝀; y), (14)

where G𝝀(y0) is the cumulative distribution function (CDF) of the predictive distribution with
known 𝝀 = (𝜷,𝜽), that is, a normal distribution with mean m1 and variance v1 given in (12)
and (13); and Fc(⋅; y) is the CDF of N(𝝀̂c, S

𝜆
c ), the CD of 𝝀. Here, 𝝀̂c = (𝜷c, 𝜽̂c) is the combined

estimator of 𝝀, variance matrix S𝜆c = Var(𝝀̂c) equals to the corresponding Hessian matrix
calculated from the log-likelihood. The CD-based predictive distribution is closely related to the
Bayesian predictive distribution and the bootstrap predictive distribution as discussed by Shen,
Liu & Xie (2018) and Schweder & Hjort (2016). As in Theorem 4 of Shen, Liu & Xie (2018),
it can be shown that the CD-based predictive distribution outperforms the plug-in approach,
measured by the average Kullback–Leibler distance to the true predictive distribution.

To implement the predictive distribution formulated in (14), we use the following Monte
Carlo algorithm which is simple yet broadly applicable.
Monte Carlo prediction algorithm: Obtain S simulated copies of y0 from Q(⋅; y), denoted by y(s)0 ,
for s = 1,… ,B, by iteratively performing the following two steps.

1. Simulate a random variable 𝝀(s)|y ∼ N(𝝀̂c, S
𝜆
c ).

2. Obtain y(s)0 |𝝀(s) ∼ N(p1(𝝀(s)), v1(𝝀(s))).

These B copies of y0 can be used to approximate the predictive distribution in (14). Note
that (𝝀̂c, S

𝜆
c ) has already been computed by the SSCC method in the estimation step and

(p1(𝝀(t)), v1(𝝀(t))) for a given x0 needs to be computed by the SSCC method only once. The
Monte Carlo algorithm for a predictive distribution is simple and fast to carry out.

4. SIMULATION

Simulation studies are conducted to examine the performance, including estimation and pre-
diction, of the proposed framework. Two types of data are generated in the studies, one is
simulated from a underlying GP model and the other is a computer experiment simulated from
an actual computer model called the Bohachevsky function (Surjanovic & Bingham (2017),
https://www.sfu.ca/∼ssurjano/). All simulations are carried out by a machine with a quad-core
CPU @ 3.50GHz, 12GB RAM under R 3.3.1 in Windows 10.

To demonstrate the estimation performance, we compare the proposed combined estimator
with the regular MLE and those obtained by the compactly supported correlation Kaufman
et al. (2011), denoted by “Compact.” We consider x ∈ [0, 1]4 with three different sample sizes,
n = 1,000, 1,500 and 2,000, in which 𝜷 and 𝜽 are unknown. Although these sample sizes are
relatively small, they have pushed our machine to its limits to compute the regular MLE. This
simulation study serves the purpose of providing a comprehensive comparison across all three
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methods. For each sample size, we randomly divide each variable into equally spaced intervals.
For example, when n = 1,000, we select 8 equally spaced design points for the first variable, 5
equally spaced points for the rest of the three variables. Therefore, we have 1,000 = 8 × 5 × 5 × 5
design points in total. In the first simulation, the responses are simulated from a GP model with
𝜷 = (2, 3, 1, 2, 1.5) and

𝜙(xi, x𝑗 ;𝜽) =
4∏

k=1

exp(−𝜃k|xik − x𝑗k|),
where 𝜽 = (15, 1.5, 2, 3) and 𝜎2 = 1 is assumed to be known. To implement the SSCC framework,
we assume 𝜏 = 0.2, so that the number of blocks is m = ⌊M1∕𝜏⌋ = ⌊1∕0.2⌋ = 5. To emphasize
the estimation performance of the parameters, we specify 𝛼 = 1 for the three methods without
further tuning. Similar performance and comparison results (perhaps on a different magnitude)
are expected for a different tuning constant 𝛼, for example, say 𝛼 = 1.5 or 2. The “Compact”
method is implemented by (7), which involves one threshold parameter for each dimension.
Some tuning is performed to maintain a reasonable estimation accuracy for “Compact” and the
resulting setting is 𝜏1 = 𝜏 = 0.2 and 𝜏k = 1, for k = 2,… , p. For each sample size, we repeat the
simulation 100 times and report the mean, standard deviation and the computing times denoted
by CT, in Table 1 in the Supplementary Material.

Based on the numerical results, the estimation performance of the proposed estimator is
comparable with the other two estimators. This observation is consistent with the theoretical
results. In terms of the computing time, the proposed method provides a significant reduction as
compared with the other two methods, especially for large sample sizes. Specifically, comparing
with the regular MLE and the compactly supported correlation approach, the computing time is
reduced by more than 86% by the proposed combined estimator for all three different sample
sizes and this reduction increases with sample sizes.

To illustrate the performance of the proposed predictive distribution, we implement the Monte
Carlo prediction algorithm (Section 3) to construct predictive distributions for several untried
points following the previous settings with sample size n = 2,000. We focus on examining the
predictive performance by changing the setting of the most important variable, because this
is of interest in many applications including the real data analysis in Section 5. Four untried
settings are assumed by varying the settings of the most active variables, that is, changing the
setting of the first variable to be 0.2, 0.4, 0.6 and 0.8 respectively. The setting of the other three
variables is fixed to be (0.43, 0.5, 1). Based on the estimators in Table 1 in the Supplementary
Material, we have 𝝀̂c = (2.08, 2.90, 1.04, 1.98, 1.49, 14.79, 1.49, 2.00, 3.00). Here, we construct
the CD-based confidence distribution according to 1,000 copies of y0 generated by the Monte
Carlo prediction algorithm, denoted by y(1)0 ,… , y(1000)

0 . Figure 1 in the Supplementary Material
shows the corresponding histograms of y0 for the four untried settings. The red dashed lines are
the mean function calculated by the true parameters. The CD-based predictive distribution not
only contains the information of the predictive mean but also provides a flexible way to construct
predictive intervals with any level of frequentist coverage probability.

In the next study, the objective is to understand the computing cost of the proposed framework,
including estimation and prediction, and make comparisons with existing alternatives. We
compared seven methods, including (1) the Bayesian Tree Gaussian Process via btgp package
in R (Gramacy & Lee, 2008), (2) local Gaussian process via laGP package in R (Gramacy
& Apley, 2015), (3) an experimental design based subsampling approach proposed by Zhao,
Amemiya & Hung (2018), denoted by LHD, with 1∕4 of the full data randomly sampled, (4)
the proposed method denoted by “SSCC+MC,” (5) the SSCC estimated with plug-in prediction
denoted by “SSCC+plugin,” (6) the MLE with Monte Carlo predictive distribution denoted by
“MLE-MC” and (7) the MLE with plug-in predictive distribution denoted by “MLE+plug-in.”
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The first method (btgp) is a Bayesian version of GP proposed by Gramacy & Lee (2008). The
second one is a local GP method, denoted by laGP, is introduced by (Gramacy & Apley, 2015).
Although the idea of laGP using local data points in GP modelling is quite different from the
proposed method, it is an efficient alternative to address the computational issue especially with
a large number of inputs. laGP is implemented by the R package with the initial number of
nearest neighbours set to be 6 and the total size of local designs set to be 100. For prediction, a
default method of laGP which minimizes the predictive variance is used.

The design matrix X is sampled based on Latin hypercube designs in [0, 1]2 with sample
size n = 1,000. Here, we use p = 2, instead of a relatively a larger p in a typical computer
experiment, so that the seven methods can all be implemented without much complications. The
data is generated by GP as before with 𝛽 = (1, 1.5, 2) and 𝜃 = (10, 15). We assume that 𝜏 = 0.2
and thus m = ⌊M∕𝜏⌋ = 5. For those involving Monte Carlo samples, the number of Monte Carlo
iterations is set to be 500 due to computational constraints.

The results are summarized by the 90% predictive/posterior intervals at four randomly
selected untried settings, (0.029, 0.841), (0.334, 0.587), (0.035, 0.144), and (0.829, 0.943), in
Figure 2 of the Supplementary Material and the computing time is reported in Table 2 in the
Supplementary Material. It is shown in Figure 2 that the predictive intervals produced by the
Monte Carlo methods are in general wider than the plug-in methods and they are comparable
to the posterior interval created by Bayesian tree GP. The laGP is the most computationally
efficient one among all the methods, followed by LHD. However, both laGP and LHD create
larger uncertainties in prediction because the estimation and prediction are obtained based on a
small subset of the data. The SSCC+plug-in is the fastest among the five methods, except laGP,
and provides a reasonable coverage of the predictive uncertainty. The time for SSCC+MC,
MLE+MC and btgp is comparable because the computing time associated with these methods is
mostly dominated by the Monte Carlo iterations.

To demonstrate the performance with larger sample sizes, we compare SSCC with laGP. The
design is generated by Latin hypercube with sample size 10,000 in 6 dimensions, and the data
are simulated from GP with 𝛽 = (1, 1.5, 2.1, 2, 3, 4, 5) and 𝜃 = (10, 12, 14, 15, 16, 20). For laGP,
we consider two settings. One is the default setting which minimizes the predictive variance,
denoted by laGP-ALC, and the other is MSPE which minimizes the mean-squared prediction
error denoted by laGP-MSPE. The number of nearest neighbour locations for initialization is
six and the total size of local designs is 1,000. For SSCC, we assume 𝜏 = 0.2 and m = 5. For
four randomly selected untried settings, the comparisons are summarized by the 90% predictive
interval in Figure 3 of the Supplementary Material and the computing time is reported in Table 3
there. Although the two laGP methods are computationally faster than SSCC, they produce
larger prediction uncertainty in general.

In the second type of simulation, we conduct a computer experiment using the Bohachevsky
function, which can be written as

𝑓 (x) = x2
1 + 2x2

2 − 0.3 cos (3𝜋x1) − 0.4 cos (4𝜋x2) + 0.7,

where x1, x2 ∈ [−100, 100]. The design is a Latin hypercube sample with sample size 1,000 for
training and 20 for testing. We assume that 𝜏 = 0.2 and thus m = ⌊M∕𝜏⌋ = 5. For those involving
Monte Carlo samples, including btgp, SSCC+MC, and MLE+MC, the number of Monte Carlo
iterations is set to be 100. Similar to the first simulation, seven methods are compared and the
root mean squared prediction errors are summarized in Table 4 in the Supplementary Material.
Again, the proposed SSCC approaches are comparable to the performance using MLEs, and the
LHD-based approach seems to be similar to SSCC in this case but laGP has a much larger
prediction error.
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5. DATA CENTRE THERMAL MANAGEMENT

A data centre is a computing infrastructure facility that houses large amounts of information
technology equipment used to process, store, and transmit digital information. The objective is
to model the thermal distribution in a data centre and the final goal is to design a data centre
with an efficient heat-removal mechanism. For a data centre thermal study, physical experiments
are not always feasible because some settings are highly dangerous and expensive to perform.
Therefore, computer experiments based on computational fluid dynamics (CFD) are widely used
(Lopez & Hamann, 2011).

There are 26,820 temperature outputs generated from the CFD simulator based on an irregular
grid over a 9-dimensional space. The nine variables are listed in Table 5 in the Supplementary
Material. The first six variables control the cooling mechanism, including four computer room air
conditioning (CRAC) units with different flow rates (V1,… ,V4), the overall room temperature
setting (V5), and the perforated floor tiles with different percentage of open areas (V6). The last
three variables are the spatial location, x-axis, y-axis, and height, (V7 to V9).

To implement the proposed method, an important step in practice is to determine the first
variable. Although any variable can potentially be used, there are some choices that we found
efficient in practice. Ideally, a variable that follows the tapering assumption is a desirable choice.
In other words, for this particular variable, the correlations between pairs of responses with
larger distances are nearly zero, and therefore little information is lost by assuming them to
be conditionally independent as described by (8). We examine this assumption by checking
“within-variable” correlations for each variable. Specifically, using the variable “height” as an
example, there are 18 (say, h1, h2,… , h18) different height values that are equally spaced. We
randomly select 1,000 data points at each level and calculate

(18
2

)
= 153 pairwise correlations

(i.e., the sample correlation of those 1,000 y’s with height = hi and those 1,000 y’s with height
= hi). We then average the pairwise correlations with that same value of hi —h𝑗 (we use
d(height) to represent the value of the difference). Figure 4 in the Supplementary Material is
a scatter plot of the average pairwise correlations versus their corresponding d(height) values.
Such “within-variable” correlation plots can be obtained for other variables as well. In the cases
where the variables are continuous, their values should be discretized first. In Figure 4, the
three variables with the fastest decaying correlations are given. Among these variables, “height”
shows the fastest decay compared with the rest, and therefore is chosen as the first variable. The
dataset is then divided according to “height.” We first normalized the 18 equally spaced levels
of height to [0, 1] and set 𝜏 = 2∕17, which guarantees that each block consists of two different
levels of height and that there are 9 blocks in total.

The proposed method is applied to the full data n = 26860 and two smaller subsets,
n = 1,800 and n = 3600, to compare the performance with the original MLE and the compact
support correlation, provided the same threshold settings as in Section 4. Estimation results are
summarized in Table 5 in the Supplementary Material, where “-” indicates no result available.
For n = 1,800, we are able to calculate the estimators for the three approaches. The results
show that, with a similar estimation performance, the proposed combined estimator reduces the
computing time by more than 98% compared with the other two methods. For n = 3600 and
the full data, n = 26,860, the original MLE and the compactly supported correlation approach
cannot be carried out due to computational and/or memory limitation. Note that the compact
support approach in Kaufman et al. (2011) handles a larger training data by creating a correlation
matrix with high sparsity using a relatively small 𝜏, which is a strong assumption. In contrast, the
proposed method relaxes this assumption by allowing a larger 𝜏. In this example, the compact
support approach is carried out by using the same 𝜏 as in the proposed SSCC which may provide
insufficient sparsity for the method to be computationally feasible.

Based on the estimation results in Table 5 in the Supplementary Material, we can construct
the CD-based predictive distribution for some untried settings, which is a crucial step in finding
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an efficient cooling mechanism in a data centre. The prediction performance is first illustrated
by predicting the heat map in the data centre by varying the most active variable, height, with the
control variables assumed to be: CRAC unit flow rate 6,500, unit 2 flow rate 6,500, unit 3 flow
rate 2,750, unit 4 flow rate 2,750, room temperature 71∘ F and tile percentage 75%. Figure 5
in the Supplementary Material presents the CD-based predictive heat map at four different
heights, that is, 0, 2.25, 4.25, 6.75. From the heat maps, it is shown that on average, temperature
increases with height which agrees with thermal dynamics in general. Apart from the predictive
heat map, the CD-based predictive distribution can be used to construct confidence intervals with
any level of frequentist coverage probability. It also provides valuable insights of the thermal
distribution in the data centre. For example, Figure 6 in the Supplementary Material shows the
predictive distributions for four randomly selected untried settings at location x-axis = 23.5,
y-axis = 14.5, with four different heights. At height = 2.25 given other settings, the confidence
that the temperature will be below 66∘ F is 99.4%; at height = 6.75, the confidence that the
temperatures fall into the interval (74, 77) is 84.2%.

Based on four randomly sampled untried settings in the data centre, the predictive perfor-
mances of SSCC-MC and SSCC-Plugin are compared with laGP which appears to be the most
computationally efficient approach with massive data. The results are summarized by Figure 7 in
the Supplementary Material. As shown in the figure, the predictive uncertainty of laGP is much
larger than the two SSCC results which is consistent with the observations in the simulation
studies. This observation is also consistent with the finding in 10-fold cross-validation when
n = 1,800. For the 10-fold cross-validation, the RMSPEs and the standard deviations for both
SSCC-MC and laGP are summarized in Table 6 in the Supplementary Material.

We further compare the CD-based predictive distribution with the plug-in approach when the
MLE is available, that is, n = 1,800. Based on the same untried setting with zero height, Figure 8
in the Supplementary Material shows in the black curve the empirical predictive density obtained
by the combined CD and in the red dotted curve the corresponding plug-in predictive density.
It appears that the plug-in approach slightly underestimates the predictive uncertainty and this
underestimation is expected to be larger when the sample size gets smaller. So the empirical result
shows that, apart from computational reduction, the CD-based predictive distribution provides a
better quantification of predictive uncertainty as compared with the traditional plug-in approach.

6. SUMMARY AND CONCLUDING REMARKS

We propose a unified SSCC framework, called SSCC, to tackle two open problems in the analysis
of computer experiments using GP models: the computational difficulty and the underestimation
of prediction uncertainty. This framework consists of a sequential split-and-conquer procedure,
information combining using CDs, and a predictive distribution obtained by combined CD. Under
mild conditions, the new estimators and predictors are shown to be asymptotically equivalent to
the conventional ones using full data, while the computing time is significantly reduced. A Monte
Carlo algorithm is introduced to construct the CD-based predictive distribution which provides
rich information for inference and a better quantification of prediction uncertainty compared to
with the plug-in approach.

The asymptotic properties discussed in this paper is based on increasing domain (Mardia
& Marshall, 1984) asymptotics where more and more data are collected in increasing domains
while the sampling density stays constant. There is another framework called the fixed-domain
asymptotics (Stein, 1999), where data are collected by sampling more and more densely in a fixed
domain. It is shown by Zhang & Zimmerman (2005) that, given quite different behaviour under
the two frameworks in a general setting, their approximation quality performs about equally well
under certain assumptions. Therefore, although results given here are based on an increasing
domain, they provide some insights about the proposed estimators in both frameworks.
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The proposed framework shares some similarities with the composite likelihood (Eidsvik
et al., 2014), but there are also noted differences. The composite likelihood generally has two
approximations. First, a composite (pairwise-block) likelihood function is used to approximate
the full likelihood. Second, the tapering method in Eidsvik et al. (2014), blocks that are
not immediate neighbours are assumed to be independent. Both approximations lead to loss of
estimation efficiency. The proposed SSCC approach only uses one approximation: a tapering-type
method to control weak dependence among the spatial responses. We further provide a theoretical
condition on 𝜏 under which the tapering approximation is sufficiently accurate. As a result, we
can provide a set of clean-cut conditions to show that our SSCC estimator is asymptotically
efficient and asymptotically equivalent to the full likelihood MLE. Furthermore, we provide a
unified theory to quantify the performance of the joint estimates as well as prediction, which is
not available in Eidsvik et al. (2014).

Finally, we would like to comment that GP models provide a simple and convenient tool to
analyse expensive computer experiments. The actual correlation among the data generated form
a computer experiment may not follow the correlation pattern specified by a GP model, although
we often expect GP models to provide useful summaries of the key information. Specifically,
when a likelihood approach is used, the likelihood estimating equation can be viewed as a
quasi-likelihood estimating equation when the model is misspecified. As long as the estimating
equation is Fisher consistent, we expect to have consistent summaries of the key information
such as the first or second moments, and so on. The proposed SSCC provides equivalent results
as the likelihood approach without any additional assumptions that otherwise are typically
required by a bootstrap or a Bayesian approach. Similar to likelihood approaches, we expect our
outcome to be more robust and resistant to a potential misspecification of the correlation pattern
by GP than the bootstrap or Bayesian method. Further exploration of big dependent computer
experiment data beyond a GP model is a future research topic. As pointed out by one of the
referees, the prediction performance of the proposed method is particularly useful for computer
experiments because the prediction efficiency and accuracy are essential to several major issues
in computer experiments, including calibration and uncertainty quantification. On the other hand,
the estimation efficiency and accuracy of GP models may be of significant interest in spatial
statistics.
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