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might help these systems to become more resilient if a variety of challenges
described in this paper can be addressed. 
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1 Introduction

Our modern digitized socio-technological systems have enabled dramatic changes in
our  way of  life,  but  leave  us  open to destructive  events  such as  diseases,  floods,
terrorist attacks, and just plain human error. While our systems are vulnerable to such
events,  the key is how resilient  they can become,  i.e.,  how well  they are  able to
recover from disruptions to return to a “normal” state or close to it, and how quickly
they can do so. Data science has enabled the digital world of rapid communication,
intelligent machines, and instant information. Data science may also hold the key to
making our systems more resilient through the availability of massive amounts of data
from sensors, satellites, and online activities, allowing us to monitor the state of the
power grid, get early warning of emerging diseases, find ways to minimize the effect
of  flooding,  identify  looming  problems  in  supply  chains,  etc.  Tools  of  machine
learning can provide early warning of anomalies and alert us that a system may be
approaching  a  critical  threshold,  thus  allowing more  time for  mitigation that  will
minimize the effect of disruptions. However, for tools of data science to help us create
more resilient systems, we will need to overcome a variety of challenges. It is these
challenges we discuss in this paper. 

The challenges we present arise in a multitude of applications and the paper will
illustrate them to demonstrate the opportunities to enhance resilience. Applications to
be discussed include spread of diseases such as COVID-19 and Ebola; natural and
man-made disasters such as floods, hurricanes, oil spills, and cyberattacks; counter-
terrorism;  protecting  infrastructure  such  as  the  electric  power  grid  and  the
transportation  system;  threats  to  ecosystems,  urban  systems,  food  systems,  and
agriculture; and varied modern challenges arising from climate change, self-driving
vehicles, and participatory democracy.
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2 The Fusion Challenge

A key to the data revolution is that massive amounts of data are available from a large
number  of  sources.  A key  to  using  data  science  to  enhance  resilience  is  to  find
effective ways to utilize all those data, to learn from past disruptions, and to get early
warning of potential new problems.

Fusion Challenge:  Many analysis tasks require the fusion of information from
numerous media or sources. 

2.1 Urban Health and Climate Change

Many key indicators allow us to monitor the overall health of an urban system. These
include  the  state  and  spatial  distribution  of  critical  infrastructure  such  as  the
transportation,  electricity,  gas,  and  water  systems;  the  capacity  of  the  healthcare
system; the distribution of vulnerable populations (such as those living near  flood
plains or without air conditioning during a heat wave). Many of these indicators are
enhanced in importance by climate change.

Climate change affects our urban areas in a multitude of ways. We can expect
more and more severe hurricanes,  heat waves, drought, and floods. Sea levels will
rise. What can urban areas do to prepare for them and mitigate their effects? Fusing
data from many sources, can we predict which subways might be flooded? (During
“Super Storm” Sandy in 2012, a massive hurricane, some of the subway tunnels in
New  York  City  were  flooded.  Mathematical  models  developed  at  Columbia
University  had  predicted  exactly  which  ones  [46,48].  Could  we  have  taken
precautionary measures knowing this?) Many power plants are located in low-lying
areas near bodies of water. Can we fuse data from many sources to predict which ones
might be flooded with sea level rise and move them in advance of those floods or
otherwise  protect  them  from  flood  damage?  Train  tracks  leading  to  the  heart  of
downtown areas are also often in low-lying areas prone to floods. Can we figure out
which tracks are subject to flooding and raise them in advance? The New York City
Climate Change Adaptation Task Force set out to address these kinds of questions
and, according to a New York City Panel on Climate Change report in 2010, this
objective “will require ongoing and consistent monitoring of a set of climate change
indicators.  Monitoring  of  key  indicators  can  help  to  initiate  course  corrections  in
adaptation policies and/or changes in timing of their implementation” [47]. Moreover,
according  to  the  most  recent  such  Panel  on  Climate  Change  report  in  2019,  “A
centralized,  coordinated  indicators  and  monitoring  system  is  essential  for  a
comprehensive, city wide risk assessment of trends in climate and impacts and course‐
correction toward climate change adaptation and resiliency goals and targets” [76].

There are many parameters that determine the normal healthy state of a complex
system, and it is necessary to gather information from numerous sources to monitor
the health of such a system and get early warning of departures from the “normal.”
For example, in predicting floods in urban areas, one needs to consider data from rain
gauges,  radar,  satellite algorithms, computer models of atmospheric processes,  and
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hydrological models. In understanding extreme events that may trigger tidal flooding
in  urban  areas,  one  needs  to  monitor  sea  level  rise,  flood insurance  claims  from
businesses and individuals, urban growth trends, the capacity to restore power after a
flood, and socioeconomic factors. Understanding factors involved in previous floods,
and using them to get early warning about new floods, can help us mitigate impacts
and recover faster. To give just one example, the Peak over Threshold approach uses
multiple events to estimate return periods for such floods [60,82]. 

Urban heat is a major issue leading to adverse effects not only on public health but
also on the economy. Extreme heat events have been a major topic of concern at the
US Centers for Disease Control and Prevention for at least a decade [20]. Such events
can  result  in  increased  incidence  of  heat  stroke,  dehydration,  cardiac  stress,  and
respiratory  distress.  Individuals  under  stress  due  to  climate  may  also  be  more
susceptible to infectious diseases. Among the data fusion tools designed to determine
urban heat exposure for the population in a city is the Spatial and Temporal Adaptive
Reflectance  Fusion Model  (STARFM),  using both ground sensor  temperature  and
satellite readings [39,41]. Fefferman [36] led a study of how to evacuate the most
vulnerable individuals to climate controlled environments during a major heat event
in an urban area (Newark, New Jersey, US), aimed at minimizing health effects of
such an event.  Her goal was to determine where  to locate evacuation centers  and
whom to send to which center. The project required a major effort at fusing data as to
location of potential centers, travel routes and times to the centers, population size
and demographic distribution per city block, and at-risk groups and their likely levels
of healthcare required. 

2.2 Animal Health: Biodiversity and Farmyards

Biodiversity is the variability in the plant and animal life in species, total numbers of
the  species,  their  habitat,  and  their  distribution.  Evidence  about  the  health  of
ecosystems is often obtained by measuring their biodiversity [73]. Identifying species
and individual animals or plants offers insight into the crisis of biodiversity loss on
our planet. Modern methods of data science allow for the use of a great deal of data to
identify species and, sometimes, even individual animals. Identification of individual
animals is important if we are trying to estimate the population of a given species in a
given region. But how hard is it to identify an individual lion or elephant, especially if
we may only see the animal through a “camera trap” image that may only include part
of their body and often with poor illumination? Automated methods for identification
of  species  and  of  individual  animals,  built  on  modern  methods  of  artificial
intelligence,  enable  us  to  get  early  warning  of  disruptions  to  the  population  of
ecosystems. These methods depend upon the fusion of large amounts of biometric
data, such as identification of external body pattern, footprints, scent, acoustics, DNA
barcoding, etc. [49]. Biometric techniques have the advantage that they don’t require
invasive interventions since data can be collected without capture, instrumentation or
tagging. The amounts of data can be huge. For example, the project called Snapshot
Serengeti, based in Tanzania, has collected millions of camera trap images of lions,
leopards,  cheetahs,  elephants,  and  other  animals  [63]. Recordings  of  animal
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vocalizations can produce over half a gigabyte of data per hour. Machine learning can
be very helpful in classifying animal calls. For example, it has been used to classify
and count syllables in an animal’s call, and can then be used to distinguish between
calls of different species, including types of frogs, birds, etc. [86]. We are far from
being able to identify species, let alone individual animals, in the wild. However, new
methods of artificial intelligence and machine learning are leading to some successes.
For  instance,  [63]  describes  the  use  of  “deep  convolutional  neural  networks”  to
identify and count species in the Snapshot Serengeti dataset of 3.2 million images.
Identification is accurate 93.8% of the time.  

Identification  of  individual  animals  is  becoming  important  for  domesticated
animals. As the number of farms decreases but the number of cattle on each farm
grows, it becomes increasingly important to identify individual animals in an efficient
way for health monitoring, adjusting feeding to enhance milk production, tracking
food and water consumption, and tracking and registration of cattle. Existing methods
such as microchip embedding or  ear  tagging can be expensive and are  subject  to
forgeries or damage. Identification of individual livestock is also important to contain
spread  of  disease  and  has  become  recognized  as  important  by  international
organizations,  e.g.,  in  preventing  spread  of  diseases  such  as  Bovine  Spongiform
Encephalopathy (BSE). Recent work shows that  individual cattle can be identified
through a deep learning approach based on “primary muzzle point (nose pattern)”
characteristics. This addresses the problem of missing or swapped animals (especially
during large movements of cattle) and false insurance claims [52,53]. Tools of face
recognition,  computer  vision,  animal  behavior,  pain  metrics,  and  other  tools  are
already useful in identifying diseases of many domesticated animals, including sheep,
and pigs, and to give early warning of potentially devastating epidemics from diseases
such as BSE, a critical factor in keeping modern farms resilient [49,74]. 
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3 The Decision Support Challenge

Decision science is an old subject that was once the domain of social scientists and
economists but is now also the domain of computer scientists and mathematicians
who, working with traditional decision scientists, are developing tools of modeling,
simulation, algorithmics,  uncertainty quantification, and consensus.  This new data-
driven decision support can allow comparison of a vast array of alternative solutions.
While using data to make decisions is not new, data science has led to many different
techniques to make better decisions, especially new algorithmic approaches. The new
field of algorithmic decision theory aims to exploit algorithmic methods to improve
the performance of decision makers (human or automated) [15,67,71,79].

Decision  Support  Challenge: Today’s  decision  makers  have  available  to  them
remarkable  new  technologies,  huge  amounts  of  information,  and  ability  to  share
information at unprecedented speeds and quantities. These tools and resources will
enable  better  decisions  if  we can  surmount  concomitant  challenges:  Data  is  often
incomplete or unreliable or distributed, and involves great uncertainty; many sources
of  data  need  to  be fused  into a  good decision,  often in  a remarkably  short  time;
interoperating/distributed decision makers  and decision-making devices  need to be
coordinated;  decisions  must  be  made  in  dynamic  environments  based  on  partial
information; there is heightened risk due to extreme consequences of poor decisions;
decision makers must understand complex, multidisciplinary problems [71].

3.1 Ebola and COVID-19

The 2014 Ebola outbreak in West Africa should have reminded us that the world is
ill-prepared for a severe disease epidemic. When in 2020 the COVID-19 pandemic
hit, the world was indeed poorly prepared. The successful fight to contain the Ebola
outbreak  was  helped  by  application  of  data  analysis  and  mathematical  models  to
support  decision  makers.  Those  models  accurately  predicted  how  and  where  the
disease was spreading and how to contain it. The data allowed decision makers to
understand things like: how many beds and lab tests would be needed — and where
and when to deploy them. Important to the success of the Ebola containment was the
sheer and unprecedented magnitude of epidemiological data made available online to
researchers and modelers by the World Health Organization and health ministries of
the  most  affected  countries.  Though  modelers  had  analyzed  ongoing  epidemics
before, such as the 2003 SARS epidemic and 2009 Swine Flu pandemic, they did not
have access to such rich sources of data. Data fed into models showed we could stop
this outbreak if 70% of Ebola cases could be placed in Ebola treatment units, had
effective isolation, and had safe burials [18]. 

During  the  COVID-19  pandemic,  there  has  been  literally  a  tsunami  of  data
available within a short time, enabling scientists and policy makers around the world
to fit their models and simulations. As models show, faster  decisions to shelter in
place might have saved a great many lives [66]. However, decision makers have to
balance many considerations, which can slow down decisions at potential peril. The
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more we can develop tools to make effective decisions faster, the better we can ensure
resilience in our systems.

3.2 Resilient Supply Chains

During  COVID-19,  there  have been  major  shortages  in  items such  as  ventilators,
personal  protective equipment  and other  medical  supplies,  as  well  as in consumer
goods such as toilet paper and disinfectant wipes and sprays. Our supply chains have
been dramatically changed in the digital age, with artificial intelligence allowing both
the  private  sector  and  the  government  to  minimize  inventories  due  to  extremely
accurate knowledge of customer demand. However, these AI tools fail when there is
an anomalous event. A key to making supply chains more resilient is to develop tools
to allow them to identify alternative sources and change priorities in a speedy way
[28,55]. Data science will be critical to support decisions involving changed priorities,
alternative suppliers, modified transportation routes or carriers, etc. 

3.3 Precision Agriculture

Data science has led to precision agriculture, which allows the farmer to “leverage AI
and  fine-grain  data  about  the  state  of  crops”  to  improve  yield,  helping  to  make
decisions as to when to plant, when to harvest, when to water, when to implement
pest control or fertilizer usage, etc. [27]. Thus, using sensors on farm equipment or in
the soil can make agricultural practices sustainable and reduce environmental impact
through data-driven farming, reducing water and fertilizer use and minimizing the use
of pesticides. It can make farms “self-healing” and more resilient. As Daugherty and
Wilson [27] observe, “The ultimate goal with precision agriculture is that disparate
systems can come together to produce recommendations that farmers can then act on
in real time,” and of course in the future perhaps even have intelligent machines act
on those data  without  having the farmer  in  the loop.  Being able to  modify plans
quickly on the basis of data and corresponding models can make agriculture more
resilient. However, if watering a field is automated, based on embedded sensors and
machine learning, but the crops dry out, entirely new jobs will be needed to recreate
what happened in order to improve decision making in the future. 

4 The Combinatorial Explosion Challenge

Combinatorial Explosion Challenge: Data science allows comparison of an array of
alternative  solutions to problems. However,  the number of  alternatives  is  often so
large that we cannot take all into account in a timely way. We may not even be able to
express all possible preferences among alternatives.

4.1 Counterterrorism: Nuclear Detection

Terrorist attacks are a major potential source of disruption to modern societies. One
challenge  is  to  minimize  the effect  of  terrorism by doing thorough screening  and
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testing, but designing the most efficient screening protocols can be difficult due to the
number of possibilities. Consider inspecting containers at ports for nuclear materials.
There  are  a  variety  of  tests  that  can  be  performed  on  containers,  for  example
determining  whether  or  not  the  ship's  manifest  sets  off  an  alarm in an  “anomaly
detection”  program;  whether  or  not  the  container  gives  off  neutron  or  Gamma
emissions  that  are  above  some  threshold;  whether  or  not  a  radiograph  image
recognition test comes up positive; whether or not an induced fission test comes up
positive. One can look at tests sequentially, choosing the next test to perform based on
the outcome of the previous test.  This kind of sequential  diagnosis is  common in
many fields such as medicine. In container inspection, one can represent the possible
tests in a binary decision tree (BDT), where the nodes are tests and we take the right
arrow  after  a  given  test  if  the  result  is  positive  and  left  arrow  if  it  is  negative.
Ultimately,  the  container  is  either  allowed  through  or  designated  for  complete
unpacking. One seeks a BDT that is optimal in some sense. However, even with five
tests, there are 263,515,920 possible BDTs, and the number of possibilities makes it
computationally impossible to find an optimal one. Among promising approaches to
this problem is specialization of the class of BDTs and development of new search
algorithms to move from one tree to better ones [6,58,59].

Another example of Combinatorial Explosion also arises from counter-terrorism
applications,  the  problem  of  comparing  the  performance  of  alternative  nuclear
detection  algorithms.  The problem is to design experiments  to compare algorithm
performance, taking into account many relevant factors such as type of special nuclear
material being tested, shielding, masking, altitude, humidity, temperature, and speed
of vehicle being screened. For each of these factors, there are several possible values,
and there are too many combinations to test all of them in experiments. This requires
development of tools to design experiments that test together all significant pairs of
values [26,50]. 

4.2 Testing for Disease: COVID-19

An  alternative  approach  to  the  container  inspection  problem  is  a  tool  called
SNSRTREE [12,13]. This tool involves a large-scale linear programming model for
sequential  inspection of containers that allows for mixed strategies,  accommodates
realistic  limitations  on  budget  and  testing  capacity  and  time  limits,  and  is
computationally more tractable. Recently, research has begun on applying this tool to
testing for COVID-19. The goal is to determine how to optimally select from among
the available tests for COVID-19 according to the person, their work, the results of
any prior tests, and current, dynamic test availability. The goal is to use SNSRTREE
to determine the probability that a specific individual is, or is not, “infective.” Tests
for the COVID-19 infection include self-reports of symptoms, thermometer readings,
clinical  observations,  nasal  swab  tests,  saliva  tests,  etc.  Tests  vary  as  to  cost,
reliability, and assay time to get a result. To develop optimal testing policies, we first
ask for the result of a first test, and depending on that result, we may reach a decision
or choose a second test. After a second test, we may reach a decision, or choose a
third test, etc. Every such policy has a cost, integrating the expected cost of the tests
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with  the  economic  and  human  costs  of  false  positives  and false  negatives.
SNSRTREE finds the entire set of “optimal” testing policies for all possible budgets.
Read in one way, it provides least estimated infection at a given cost; read the other
way, it provides lowest estimated cost for a given infection control. What makes the
modification of  SNSRTREE or any other  algorithm for  application  to  COVID-19
testing complicated is that infection is a moving (time dependent) target rather than a
fixed property; tests may have different assay times and availabilities over time; and
test  results  may  not  be  stochastically  independent  –  all  of  which  add  to  the
combinatorial explosion of possibilities.1 

4.3 Ecological Monitoring

Still another example of the Combinatorial Explosion Challenge comes from NEON
(National  Ecological  Observatory Network),  a project  that  involves gathering data
from 20 sites across the US to get a continent-wide picture of the impacts on natural
resources and biodiversity of climate change, land use change, and invasive species.
The  understanding  gained  from  NEON  can  contribute  to  the  resilience  of  the
ecosystem in numerous ways.  How are those 20 sites chosen? NEON divides the
country  into  8  million  patches.  For  each  patch,  the  project  collects  9  pieces  of
information  about  its  ecology  and  climate,  clusters  the  patches,  and  chooses  a
representative patch for each cluster. But why limit this to 9 pieces of information
when one could easily come up with 100 pieces of information about each patch? The
problem is that it would then become combinatorially impossible to do the clustering
[23].

5 The Real-time Analytics Challenge 

Near-real-time situational  awareness  (real-time analytics)  is  becoming increasingly
feasible,  based on massive amounts of data from simulation and modeling, mobile
applications,  and  sensors.  Such  data  can  be  too  rapid  for  real-time  human
consumption or exploration.

Real-time Analytics Challenge: Some data rates are so large that not all the data can
be saved and yet real-time or almost real-time decisions must be made.

5.1 Resilience in the Electric Power Grid

The  electric  power  grid  provides  an  example  where  real-time  analytics  can
dramatically  improve  resilience.2 Today’s  electric  power  systems  operate  under
considerable  uncertainty.  Cascading  failures  can  have  dramatic  consequences  [3].

1  Thanks to Endre Boros, Dennis Egan, Nina Fefferman, Paul Kantor, and Vladimir Menkov
for discussions and the specific ideas in this paragraph. 

2  Much of the following discussion is based on a white paper [1] in [23] and a presentation by
Gilbert Bindewald of the US Department of Energy to the SIAM Science Policy Committee
on October 28, 2009.
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Algorithmic methods are needed to improve security of the energy system in light of
its  haphazard  construction  and  dynamically  changing  character  and  to  find  early
warning of a changed state, i.e., to rapidly detect anomalies. “Smart grid” data sources
enable real-time precision in operations and control previously unobtainable (see e.g.,
[2,4,5,23,25,88]): Time-synchronous phasor data, linked with advanced computation
and  visualization, will  enable  advances  in  state  estimation,  real-time  contingency
analysis, and real-time monitoring of dynamic (oscillatory) behaviors in the system;
sensing  and  measurement  technologies  will  support  faster  and  more  accurate
response,  e.g.,  through remote  monitoring;  advanced  control  methods  will  enable
rapid diagnosis and precise solutions appropriate to an “event.”  Status updates that
used to come in every two to four seconds are now approaching ten times a second
using new phasor technologies.  That  rate  may be too rapid for  a  human alone to
absorb  the  presence  of  an  anomaly  in  time  to  act  upon the  information,  thereby
requiring software agent or algorithmic support. 

5.2 Smart Transportation Systems

Traffic  management  in  “smart  cities”  presents  many  examples  of  the  Real-time
Analytics  Challenge.3 “Intelligent  transportation  systems”  involve  integrated  fare
management, variable road usage charging, and traffic information made available in
real  time,  all  requiring  fusion  of  a  great  deal  of  information.  Real-time  traffic
management takes account of sensors of all kinds, ability to monitor the actual traffic
situation (volumes, speeds, incidents), and the ability to control or influence the flow
using that information to reduce traffic congestion, deal with incidents, and provide
accurate information to drivers and authorities. Sensor data depends heavily on GPS
data that needs to be related to the underlying network by map matching algorithms
that  are  computationally  expensive.  GPS  data  is  sampled  at  irregular  intervals,
possibly with large  gaps – which  requires  advanced  analytics  to  reconstruct  GPS
trajectories.  Also, GPS data is inaccurate,  needs “cleaning.” Additional complexity
arises from the need to combine the “hard” numerical readings of sensors monitoring
vehicle movements with the “soft” natural language utterances of drivers and tweets
of  the  public.  Understanding  human  transit  demands/needs  in  real-time  involves
challenges  to  help  design  adaptive  urban  transportation  systems,  help  citizens
navigate the city,  detect  and predict  travel  demand, and offer real-time alternative
routings in case of problems. The ability to offer such real-time adjustments can make
today’s smart transportation systems more resilient. For some relevant references, see
[8,40].

5.3 Food Security

The food system has multiple components:  producers  of food, those who process,
ship, or sell food products, and those who shop for food and consume it. At all steps
3  Many of the ideas on traffic management here are taken from the talk “Smart Cities – How

can Data Mining and Optimization Shape Future Cities,” by Francesco Calabrese of IBM
Ireland, at the DIMACS/LAMSADE workshop on Smart Cities, Paris, Sept. 2011.
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“from farm to  fork”  there  are  possible  disruptions  [83].  Such  disruptions  include
extreme weather events, animal diseases, terrorist attacks, and disease events such as
COVID-19, which has both closed down meat packing plants, leading to shortages,
and rapidly changed demand, leading to farmers plowing under crops and pouring out
milk. Today’s sensing and computing capacities allow us to monitor the food system
in  real  time  and  to  take  action  to  maintain  security  of  the  food  supply.  Such
monitoring includes observational data (soil conditions, land use) and data on social
processes  and  preferences.  Automatic  image  processing  of  satellite  data  [56],
information  from crop  and  soil  sensors,  and  real-time reports  of  changing  supply
chain conditions, can be used to gain real-time awareness and make changes. Such
methods have been used for example to estimate the resilience of the wheat market to
potential  ruptures  in  the global  transportation  system [34].  For  more on real-time
monitoring of the food system, see [51]4.

5.4 Resilient Ecosystems

Ecosystems  are  subject  to  increasing  disturbances  in  the  face  of  global  change
(climate change, land use change, migration patterns, increasing urbanization, etc.).
Resilience of ecosystems allows them to bounce back from perturbations [85]. Is it
possible  to  judge  in  real-time  when  an  ecosystem  is  at  the  brink  of  suffering  a
perturbation that would irreversibly disrupt it, i.e., when it is on the edge of collapse
[9,11]? Examples of such dramatic “state changes” in an ecosystem are desertification
of certain parts of the earth [21,33], coral bleaching [10], lake eutrophication [16],
major disruption of the atmospheric chemistry as a result of agriculture [38], and the
transformation of tropical forests under slash and burn agriculture [54]. One approach
is to study satellite images over a long period of time (many years) and use “deep
learning”  methods  to  identify  ecosystems  that  are  stressed  and  that  might  have
undergone a shift from a stable state to another. By identifying general characteristics
of an ecosystem including climate fluctuations, biogeochemical cycles or vegetation-
atmosphere  interactions,  it  may  be  possible  to  identify  those  characteristics  that
indicate a shift is about to occur.5

6 The Vulnerabilities Challenge

Modern society is critically dependent upon data from manufacturing and production
systems,  power  and  water,  transportation,  financial  transactions,  medicine,  etc.
Vulnerabilities are ever present, enhancing cyberattacks on our infrastructure, causing
cascading failures, leading to rapid spread of anomalies and exacerbating the impacts
of all kinds of failures. It is the very ability to utilize and benefit from large amounts
of data that sometimes creates vulnerabilities.

4  Thanks to Hans Kaper for many of the ideas in this paragraph.
5  Many of the ideas in this paragraph are due to Paolo D’Odorico and Wayne Getz.
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Vulnerabilities Challenge: How do we identify new vulnerabilities caused by usage
of  data?  How  do  we  develop  tools  for  monitoring  and  minimizing  such
vulnerabilities? 

6.1 Medical Facilities

Electronic medical records are a case in point. They lead to being able to share data
about a person’s medical condition rapidly and with a variety of medical personnel.
However,  these electronic medical  records lead to vulnerabilities.  Recently several
hospitals have had to postpone surgeries after having lost access to electronic medical
records in a cyberattack, and had to pay ransom to regain access to these records [61].
During times of uncertainty and confusion, especially disasters, criminals take full
advantage. That is particularly true of the COVID-19 pandemic. An FBI release says
that criminals are “using COVID-19 as a lure to deploy ransomware … designed to
lock” hospital or public health department computers [35]. There have already been
examples of ransomware attacks on hospitals and labs treating COVID-19 patients or
working  on  treatments,  vaccines,  etc.  [37].  Numerous  other  frauds  and  scams by
criminals during the COVID-19 pandemic also seek to take advantage of the situation.
The FBI release describes offers of sham treatments and vaccines, bogus investment
opportunities  in  medical  companies,  and people  impersonating  doctors  demanding
payment for treatment.

6.2 Cybersecurity of Supply Chains

Information  and  communication  devices  have  enabled  rapid  information  sharing,
created the ability to make financial transactions from anywherre, and provided access
from the workplace to markets worldwide. However, the very nature of these devices
as  tools,  which  use,  process  and  share  huge  amounts  of  data  rapidly,  has  led  to
vulnerabilities. In recent years, there has been a major concern about cyber threats to
information  and  communication  devices  and  processes.  A  report  of  the  US
Department of Homeland Security Cybersecurity and Infrastructure Security Agency
(CISA)  Information  and  Communications  Technology  (ICT)  Supply  Chain  Risk
Management  (SCRM)  Task  Force  [22]  gives  a  great  deal  of   detail  about  the
importance of and new approaches to supply chain risk assessment in the information
and communication technology (ICT) domain, as do reports from the US National
Institute  of  Standards  and  Technology  (NIST)  [14]  and  the  US  National
Counterintelligence and Security Center, Supply Chain Directorate [62]. The CISA
report makes it clear that cyber is a key issue. As a supply chain is only as strong as
its  weakest  link,  all  components  of  the  supply  chain  have  to  be  engaged  in
cybersecurity issues, but how to achieve this goal is a major challenge. A disruption
in one device connected to the supply chain can cascade through the entire system,
and the development of protection against such cascading effects of cyberattacks is of
central importance. The maritime transportation system is key to the world’s supply
chains. See Rose [75] for some work on models of cascading impacts of cyberattacks
on the maritime transportation system.  Some of those cascading  effects  on supply
chains result from supply substitutions. How can the potential for supply substitutions
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to lead to cascading failures be minimized? Models such as those of [31,32] of how to
control the cascading impact of power grid disruptions are very relevant here,  and
could lead to improved resilience of many types of supply chains. 

6.3 Autonomous Vehicles

Due to the ready availability of data, there is a huge increase in number of cyber-
physical  systems.  Today’s  cars  are  more  like computers  on wheels.  Yet,  the very
ability  to  utilize  large  amounts  of  data  to  perform  better  leads  to  vulnerabilities.
Cyber-physical systems control much of how a car operates. This makes today’s cars
already  semiautonomous,  taking  decisions  away  from  the  driver,  and  thereby
frequently  aiding  in  preventing  accidents.  But  could  a  criminal  or  terrorist  take
control  of a car remotely through a cyberattack and use it to cause damage? This
seems to be a serious challenge as in-car  technology becomes more sophisticated.
And it is likely to become even more of a challenge as we develop fully autonomous
vehicles. In 2013, Miller (Twitter) and Valasek (IOActive) demonstrated they could
take control of a Toyota Prius and a Ford Escape from a laptop [42]. They were able
to remotely control the smart steering, braking, displays, acceleration, engine, horn,
lights, and so on. As we move to self-driving cars, similar vulnerabilities might exist.
This is not just hypothetical. Already in our seaports,  trucks and cranes operate in
driverless mode, and there have been cyberattacks on cranes in ports [29,30]. One
approach to minimizing the impact of attacks on self-driving cars begins with risk
assessment of different kinds of attacks. See [72] for an approach. 

6.4 Oil Rigs

The failure of a blowout preventer on an oil rig in the Gulf of Mexico in 2010 led to
the devastating Deepwater Horizon oil spill, the largest oil spill in US history. That
was not due to a cyberattack.  However,  there have been cyberattacks  on oil  rigs.
According to security company ThetaRay, a cyberattack on a floating oil rig off the
coast of Africa managed to tilt the rig slightly and as a result it was forced to shut
down. It took a week to identify and fix the problem [87]. In another drilling rig event,
in 2010, a drilling rig being moved at sea from South Korea to South America was
infected by malicious software. Its critical control systems could not operate and it
took  19  days  to  fix  matters  [24,87].  The  cyberattack  infected  the  computers
controlling  the  blowout  preventer,  the  system at  fault  for  the  Deepwater  Horizon
accident. The results could have been disastrous. Oil rigs are critically dependent on
GPS for  stability,  yet  hackers  have  been  able  to  tilt  an  oil  rig,  putting  it  out  of
commission for days at high cost. Modern GPS, dynamic positioning systems, and
other technologies  that  depend on large amounts of data have made it  possible to
manipulate oil rigs in efficient ways, yet open them up to attacks and outages [29].
How can we minimize the impact of such attacks? That will be crucial to make oil
rigs and other systems more resilient.
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7 The Information Sharing Challenge

Secure information sharing is a key to enable organizations and individuals to work
together on a wide range of issues. Such information sharing is a critical component
of ensuring resilience of systems and networks. 

Information  Sharing  Challenge: Information  sharing  requires  appropriately
safeguarding both systems and information; selecting the most trusted information
sources; and maintaining secure systems in potentially hostile settings. How can one
best accomplish these things?

7.1 The Terror Attacks of September 11, 2001

Failure to detect and prevent the September 11th, 2001 attacks in New York City was,
in many ways, a result of an intelligence failure due to lack of information sharing.
At the time, there was no coordinated way to "connect the dots." Subsequent analyses,
detailed in the  Report  of the National Commission on Terrorist  Attacks Upon the
United  States,  also  known  as  the  9/11  Commission  Report  [84],  resulted  in  an
emphasis on information sharing to facilitate situational awareness and understanding.
In addition to the loss of life, the 9/11 attacks had a major economic impact in the US,
in particular on the transportation system, from which it took a long time to recover.
The  hope  is  that  information  sharing  will  prevent  successful  terrorist  attacks  or
criminal behavior, or at least minimize their impacts, i.e., make the country and its
various systems more resilient. 

In order to gain situational understanding when there are many organizations or
individuals each having some relevant information, one can create an ‘information
sharing  environment’  (ISE)  -  a  decentralized,  distributed,  coordinated  milieu  that
connects  existing  systems  and  builds  on  their  capabilities,  while  protecting
individuals’ privacy [19]. In the US, for example, “fusion centers” were created to
share  information  among numerous  agencies  and  the  private  sector  following the
September 11th attacks. They can have thousands of federal, state and local partners,
and utilize information from numerous government agencies and the private sector, to
aid in counter-terrorism and anti-crime efforts. Successful creation of an ISE requires
implementation of both technical and operational components. Technical components
(like interoperability and rules as to who can gain access and how) are necessary, but
also fundamental are the human components and procedures that ultimately allow an
ISE to succeed. An ISE requires coordination and integration of information-sharing
through collaboration and cooperation. However, there have to be shared standards
for  identification,  access,  and  utilization  of  information,  there  have  to  be  policy,
procedures, and technical solutions for safeguarding information, and there need to be
standards and accountability procedures for the protection of privacy, civil rights, and
civil liberties.
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7.2 “Participatory Democracy”

Information sharing is coming to be a key component of what some people are calling
“participatory  democracy.”  Here,  the idea is  that  participation by all  stakeholders,
including the public, can lead to better policies for governments. While the concept of
participatory  democracy  goes back to Athenian days [7]  it  is  becoming more and
more  important  in  this  digital  age.  The  book  [70]  develops  the  concept  of  “e-
democracy,” which, among other things, includes web-based participation leading to
changes in public policy. The underlying assumption is that decisions reached through
public  participation  can  lead  to  more  stable  societies,  smarter  cities,  etc.  Such
participatory  democracy  has  been  explored  in  the  context  of  water  usage,  power
supply, health care, and other applications, but it requires the development of methods
of sharing information and views, beliefs, and preferences. Tools for reaching good
decisions  using  participatory  methods have been  explored  by  various  authors,  for
example [69]. The goal is to develop tools to facilitate stakeholders’ participation and
achieve collective commitment, which in turn would seem to lead to greater stability
and resilience. 

7.3 “Super Storm” Sandy

After “Super Storm” Sandy, the massive hurricane that hit New York City in 2012,
the port of New York/New Jersey was left dramatically damaged. Yet, it was very
resilient  and recovered  quickly.  In a report  on the resilience  of  the port  [81],  the
authors  point  out  that  “soft”  resilience  strategies  were  vital  in  its  recovery  after
Hurricane Sandy. Such strategies “include ways to reduce vulnerability and improve
response and recovery capability through planning, people, partnerships and policy”
and “planning for response and recovery; increasing access to high quality data; and
developing a web of bonds, ties and relationships across sectors - that is, building
what  scholars  have called ‘social  capital’  through collaboration.”  Thus, a  stronger
social infrastructure (keyed by good information sharing) led to a more resilient port.

7.4 Secure Multi-party Computation

One  theoretical  approach  of  note  has  come  to  be  called  “Secure  Multiparty
Computation [89], an area aiming at allowing parties to jointly compute something
over  their  inputs  while  keeping  those  inputs  private.  It  is  a  model  for  “secure
information sharing.”  We have begun to see a new effort  in  systematizing  secure
computation to  allow  decision  makers  to  understand  essential  strengths  and
weaknesses  of  different  secure  computation  solutions  (e.g.,  whether  or  not  they
guarantee  fairness  and  their  prerequisites  regarding  correctness,  auditability,  and
compliance) and determine which best applies in a given scenario [68]. 
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8 The Trustworthiness Challenge

Data comes from multiple sources and some are more accurate than others. Multiple
information sources often provide inconsistent or conflicting information – whether
maliciously,  or  due to  noise.  This  is  especially  so in  emergency situations where
heterogeneous  information  streams  describe  damage,  physical  needs,  information
needs, etc. in different locations. To utilize the vast amounts of data available to us in
this age of Big Data,  we have to understand what sources we can trust.  We need
precise definitions of factors contributing to trustworthiness: accuracy, completeness,
bias. For work along these lines, see for example [64,65]. Work is also needed to
develop  claim  verification  systems,  with  automated  claim  verification  by  finding
supporting and opposing evidence. 

The Trustworthiness  Challenge:  How can  we develop  computational  frameworks
and other  tools  that  address  the problem of trustworthiness  in  disasters  and other
situations?

8.1 Trust in Authorities During Disasters

Responses to disasters will work better if people trust those in charge and comply
with instructions,  thus allowing more rapid and effective response to disasters and
making society more resilient. Greenberg [44] argues that there are two factors that
determine  whether  individuals  trust  organizations,  in  particular  government
organizations. One is perception of the competence of the organization and the second
is the perception that the organization possesses values and intentions consistent with
those of the individual asked to trust it, things like fairness or non-bias or willingness
to listen and communicate.  In  2013,  after  Super Storm Sandy,  Greenberg  [43,44]
investigated the New Jersey public’s willingness to support rebuilding of devastated
parts of the state. He asked residents if they were willing to contribute to a special
fund for rebuilding. “The vast majority were unwilling, and we found that mistrust of
the state was a strong predictor of their unwillingness to contribute.  Many did not
trust state government to use a dedicated fund for the designated purpose” [44]. In the
midst of a disaster such as the COVID-19 pandemic, many technologies are being
touted  as  helpful,  e.g.,  for  screening,  testing,  contact  tracing,  enforcing  social
distancing,  etc.  If  Greenberg  is  right,  issues  of  fairness  and  ethics  involving  the
government agencies that will deploy the technologies will enter just as significantly
as issues of technical competence of those agencies and technical performance of the
technologies.

8.2 Risk Communication and Human Perception During a 
Pandemic

COVID-19  reminded  us  that  communications  and  human  behavior  are  important
factors to consider when preparing for and during a disaster, e.g., a pandemic. How
does human behavior such as panic hoarding of toilet paper, hand sanitizer, and pasta,



16

which we have seen during the COVID-19 pandemic, arise? To some extent, hoarding
is a rational response to being told not to venture out a lot, in which case it makes
sense to  stock up on a lot  of goods when you do [57].  How do communications
impact  hoarding  behavior?  Among other  things,  they  can  impact  our  trust  in  the
supply system.  In the US, there were some early inconsistencies in such messaging.
For example, the Centers for Disease Control and Prevention recommended keeping a
2-week supply of food at hand and the Federal Drug Administration recommended
that  people  should  only  buy  enough  for  the  week  ahead  [57].  Good  risk
communication is a key to resilience in the case of a disaster.

One critical element involved in reopening an economy after people are required
to stay home at the height of a disease outbreak such as COVID-19 is the availability
of healthy and willing workers.  It  is  important  to understand the workers’  mental
models of the risk of infection, and how they frame decisions related to the safety of
the  workplace.  This  will  involve  questions  relating  to  workers’  concerns  about
competence  of  those  laying  out  guidelines  about  workplace  safety.  For  relevant
research  on  how workers  might  make  such  decisions  after  disasters,  see  [77,78],
where the authors studied flu epidemics and an urban biological catastrophe involving
anthrax  and  explored  people’s  decisions  about  returning  to  work.  Their  work
demonstrates  the importance  of risk communication in making the economy more
resilient.

8.3 Identity and Access Management

To return to the topic of information sharing discussed in Section 7, another critical
principle underlying a successful information sharing environment (ISE) is trust. This
is both a human and a technical issue.  ISEs only work when, over time, participants
learn  to  work  together  and  trust  each  other.  On  the  technical  side,  trust  can  be
accomplished through identity credential access management solutions, which are a
means  for  participants  to  have  confidence  in  the  identity  of  collaborators.
“Trustmarks” are digitally-signed assertions by a third party assessor that are shared
between  parties  seeking  to  share  information.  The  parties  treat  a  third  party
verification as evidence that the trustmark recipient meets the trust and requirements
as set forth in some agreement. For more information on trustmarks, see [45]. For
more on the subject that is coming to be called identity and access management, see
[80]

Proving your identity is part of information sharing. Proving that  you have the
authority to do something is another component of identity and access management
[17],  and  this  subject  can  play  a  role  in  enhancing  recovery  during  a  disaster.
Consider a firefighter from New Jersey who goes to Florida to help in the recovery
from a hurricane, an emergency management technician from New Jersey who goes
to California to help treat earthquake victims, or a policeman from New Jersey who
goes to New York City to help control a terrorist standoff.   How can these people
convince the responsible people at the disaster scene that they are who they are, but
more importantly that they have official credentials such as a security clearance or a
permit to carry a weapon or a hazardous materials cleanup certificate? The tools of
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identity and access  management  can enable their smart  phones to carry encrypted
information  about  their  credentials  that  will  speed  up  the  approval  for  their
involvement by the local authorities [17]. This is an important, growing field that will
help enhance trust and as a result enhance resilience in disaster situations.  

9  Closing Comments

Today’s world of big data, massive computing capacity,  artificial intelligence,  and
machine learning makes it possible to learn how to build resilience into systems. The
deluge  of  data  from  in-situ  sensors,  remote  sensing,  images,  videos,  recordings,
makes it possible to observe changes in systems across temporal and spatial scales.
These same sources of data should make it possible to develop tools for characterizing
resilience.  However,  in addition to the challenges discussed in this paper,  another
critical one is that there are no agreed-upon metrics to measure whether a system has
become more (or less) resilient, or many tools for improving a system’s resilience. 

As we have observed, resilience of a system can be enhanced by learning from the
past  to  sense  emerging  risks.  As  more  data  becomes  available,  this  learning  can
benefit.  We can  fuse massive amounts of  data of  different  kinds,  combining with
machine learning tools for anomaly detection, to provide early warning that a system
might be in danger. By providing tools for faster awareness of problems, data science
can give systems time to take mitigating actions. This learning can only be useful,
however,  if  we can identify appropriate features  and indicators,  determine how to
measure  them,  and  use  them  as  input  into  tools  of  data  science  to  learn  which
parameter configurations allow a system to recover to a healthy state if it has been
disrupted. 
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