
Resilience Algorithms in Complex Networks

Fred S. Roberts1[0000-1111-2222-3333]

1 DIMACS Center, Rutgers University, Piscataway, NJ 08854, USA

Abstract. Today’s complex systems are vulnerable to disruptions from natural,
deliberate, and accidental events. The paper explores resilience of systems
under disruptions due to disease events, fires, outages in the power grid, and
damage to critical infrastructure, and describes algorithms for responding to a
disruption that minimize the departure from a previous state.

Keywords: Resilience, disease spread, power grid, infrastructure repair

1 Resilience

Today’s society has become dependent on complex systems, enabled by increased
digitization of our world and the increasingly ubiquitous nature of intelligent
machines, that have had a great impact on virtually all facets of our lives and our
societies: enabling our financial transactions, running our power grid, underpinning
our transportation systems, empowering our health care, supporting the rapid delivery
of supplies and materials. Yet these changes have made us vulnerable to natural
disasters, deliberate attacks, just plain errors. In recent years, “resilience” of complex
natural and social systems has become a major area of emphasis; resilience in
response to hurricanes, disease events, floods, earthquakes, cyber attacks, …

The general concept of resilience is the ability of a system to recover from
disasters or attacks and avoid catastrophic collapse. We can think of a system existing
within a “normal healthy range” as measured under some parameter or parameters. In
a resilient system, values will return to the normal healthy range after a disruption. Or
they might establish a new healthy range – one that is not that far from the previous
one. See Figure 1.

Fig. 1: A resilient system returns to its normal healthy range or one close to it.

2

There are many parameters that measure a “healthy” system. Some will get back
into their normal healthy range faster than others. Do we ask that the longest time to
return to this range be small? Or that the average time to return to this range be small?
There are many such questions that we need to answer before being able to define
resilience precisely.

One approach to resilience is to develop algorithms for responding to a disruption
that will minimize the departure from the previous state when things settle down.
Another is to design systems that can bounce back from disruptions quickly. In this
paper we will emphasize the former. We will illustrate this with four examples built
around models using graphs and networks and will present “toy” examples that
illustrate the main points about how algorithms might help in creating more resilient
systems: containing the spread of disease, mitigating the effect of fires, controlling
cascading outages in the power grid, and reopening a damaged infrastructure network.

2 Spread and Control of Disease

The spread of the new Coronavirus COVID-19 is the latest (and most drastic)
example of a newly emerging disease that threatens not only lives but our economy
and our social systems. SARS, MERS, Ebola, and Zika are other recent examples.
Modern transportation systems allow for rapid spread of diseases. Diseases are spread
through social networks. “Contact tracing” is an important part of any strategy to
combat outbreaks of infectious diseases, whether naturally occurring or resulting from
bioterrorist attacks. We will illustrate the ideas with some fairly simple ”toy” models
that will illustrate concepts of resilience.

We model a social network as an undirected graph. The vertices of the graph
represent people and there is an edge between two people if they are in contact. We
imagine that the vertices are in different states at different times. In the simplest “toy”
model, there are two states, a susceptible state that we will represent with a green
vertex and an infected state that we will represent with a red vertex. Times are
discrete: t = 0, 1, 2, … Let si(t) give the state of vertex i at time t. This is sometimes
called an SI model. More complex models might include susceptible S, exposed E,
infected I, recovered R, and possibly split by age group, sex, etc.: SI, SEI, SEIR
models, ...

We will consider a very simple process called an Irreversible k-Threshold Process
in which an individual changes their state from green to red at time t+1 if at least k of
their neighbors are in state red at time t. Moreover, an individual never leaves state
red. The disease interpretation is that an individual is infected if sufficiently many of
their neighbors are infected. In the special case k = 1, an individual is infected if any
of their neighbors is infected. Figure 2 describes an irreversible 2-threshold process. It
shows how the disease spreads from two infected vertices at time 0 to four at time 1,
because each of the two new infected vertices had two infected neighbors. After that,
no more spread can occur since the remaining uninfected vertices have only one
infected neighbor. Figure 3 describes an irreversible 3-threshold process. Two of the

3

green vertices turn red at time 1 since they have three red neighbors at time 0, but the
third does not. It turns red at time 2 because at time 1 it now has three red neighbors.

A great deal of attention has been paid to a saturation problem, the Attacker’s
Problem: Given a graph, what subsets S of the vertices should we plant a disease with
so that ultimately the maximum number of people will get it? This has an economic
interpretation: What set of people do we place a new product with to guarantee
“saturation” of the product in the population?

Fig. 2: An irreversible 2-threshold process.

Fig. 3: An irreversible 3-threshold process.

These problems are hard in a formal sense. Consider the problem called
IRREVERSIBLE k-CONVERSION SET: Given a positive integer p and a graph G,
does G have a set S of size at most p so that if all vertices of S are infected at the
beginning, then all vertices will ultimately be infected? Dreyer and Roberts [1]
showed that
IRREVERSIBLE k-CONVERSION SET is NP-complete for fixed k > 2. For many
more results about irreversible k-conversion sets, see [1].

There are various complications that have been considered in this model. For
example, one could take k = 1, but a person only gets infected with a certain
probability. Or, a person is automatically cured after being in the infected state for d
time periods. Or, a public health authority could have the ability to “vaccinate” a
certain number of vertices, making them immune from infection. It is the vaccination
strategy that relates to the resilience question and it is natural to ask: Can we find
vaccination strategies (algorithms) that minimize the number of people who get sick,
i.e., minimize departure from the normal. It is also natural to ask: Can we find

4

vaccination strategies that minimize the amount of time before an outbreak is
controlled, i.e., minimize time to return to normal. We turn to these questions next.

3 Vaccination Strategies: Vaccinations and Fighting Fires

Mathematical models are very helpful in comparing alternative vaccination strategies.
The problem is especially interesting if we think of protecting against deliberate
infection by a bioterrorist attacker but applies if we think of “nature” as the attacker.
Another simple toy example considers an irreversible k-threshold model where a
defender can vaccinate v people per time period but an attacker can only infect people
at the beginning. We might ask: What vaccination strategy minimizes number of
people infected? This is also sometimes called the firefighter problem. Here, we think
of a forest or a city where a fire spreads to neighboring trees or buildings and
firefighters can be placed at trees or buildings each time period to try to control the
fire. We alternate fire spread which occurs according to an irreversible k-threshold
model, and firefighter placement. It is usually assumed that k = 1 and we will assume
this. The firefighter problem goes back to Hartnell [2]. A variation has the
firefighter/vaccinator and fire/infector alternate turns, having v new firefighters to
place/vaccination doses to give per time period and i new fires/new doses of pathogen
per period. What is a good strategy for the firefighter/vaccinator?

Figure 4 illustrates the firefighter model with k = 1 (catch fire/get infected if one
neighbor is on fire/infected) and v = 3 (you can place three firefighters/vaccinate three
people each time period.) In successive grids, either the fire (disease) spreads or one
places firefighters (doses of vaccine). It takes four time periods and 11 firefighters
(vaccinations) to control the fire (disease outbreak).

 t=0 t=1

5

 t=1 t=2

 t=2 t=3

 t=3 t=4

 Fig. 4: The firefighter model with k = 1, v = 3. Thanks to Kah Loon Ng for help with this
figure.

There are many resilience questions that can be asked. Can the fire (epidemic) be
contained? How many time steps are required before fire (epidemic) is contained?
How many firefighters (doses of vaccine) per time step are necessary? What fraction
of all vertices will be saved (burnt/infected)? Does where the fire (disease) breaks out
matter? What if the fire (disease) starts at more than one vertex?

Consider the case of an infinite d-dimensional grid. With d = 2 (similar to the grids
in Figure 4), it is easy to see that a fire (disease outbreak) cannot be controlled with
one firefighter (vaccine dose) per time period. With d = 2 and v = 2 (two firefighters or
vaccinations per time period), one can show that a fire (disease) starting at one vertex
can be controlled in eight time steps, with 18 trees burned (people infected). Develin
and Hartke [3] showed that one cannot do better than 18 steps and Wang and Moeller
[4] that one cannot contain the fire (disease outbreak) in less than eight steps. If d 3,
note that every vertex has 2d neighbors. Thus: 2d-1 firefighters (vaccine doses) per
time step are sufficient to contain any outbreak starting at a single vertex. Develin and
Hartke [3] showed that if d 3, 2d – 2 firefighters (vaccine doses) per time step are
not enough to contain an outbreak. However, with 2d – 1 firefighters (doses) per time
step containment can be attained in two time steps. This is just one example of a
result, and there is an extensive literature on the firefighter problem by now.

There are many variants of the irreversible k-threshold model that would make the
firefighter problem more realistic. A vertex could stay in the burning (infected state)

6

for T time periods after entering it and then go back to the non-burning (uninfected)
state – which is more appropriate for the disease application than the firefighting
application. We could explore the strategy of bringing in a firefighter (vaccinating a
person) once k-1 neighbors are burning (infected). We could consider the case of
starting to burn (getting infected) with a certain probability if a neighbor is burning
(infected). We could consider the case where firefighters are only successful at
blocking a fire at a vertex (vaccines are only successful at protecting against a
disease) with a certain probability. The amount of time you remain burning (infective)
could also exhibit a probability distribution.

4 Cascading Outages in the Power Grid

Today’s electric power systems operate under considerable uncertainty. Cascading
failures can have dramatic consequences, including widespread blackouts. How
resilient is the power grid? How can we design “control” procedures so that the power
grid can quickly and efficiently respond to disturbances and quickly be restored to its
healthy state? Grid disruptions can cascade so fast that a human being may not be able
to react fast enough to prevent the cascading disaster, leading to a major blackout. We
are dependent on rapid response through algorithms. We need fast, reliable algorithms
to respond to a detected problem. The algorithm should not necessarily require human
input, has to be able to handle multiple possible “solutions,” and has to be able to
understand what to do if all possible solutions are “bad.”

One tool of interest is the cascade model of Dobson, et al. [5,6]. In this model, an
initial “event” takes place, then demands and generator output levels are reconfigured,
new power flows are instantiated, the next set of faults takes place according to some
stochastic model, and the process repeats with reconfiguration of demands and
generator output levels.

The power grid model is not the same as a disease-spread model. Energy flows
from generators through power lines (edges in the power grid graph). Each edge has a
maximum capacity. When a vertex (substation) or edge (transmission line) outage
occurs, power reroutes according to physical laws (Kirchhoff’s Law, Ohm’s Law).
Because of the rerouting, flows on parallel paths are increased. This could cause an
overload in a distant transmission line. So failures can take place non-locally. Figure
5 demonstrates the model. In (b), there are a lightning strike and a fire, leading to
destruction of the two lines (seen in (c)). This leads to increased flows on some lines
(d) and loss of some more lines (e). Some demand is lost at yellow vertices in (f).
More lines are lost (g) and more demand is lost (h).

7

(a) (b)

 increased flow

 (c) (d)

 (e) (f)

 (g) (h)

Fig. 5: The cascade model for power grids. Red edges show increased flow. Yellow nodes
show lost demand. Thanks to Daniel Bienstock for the figures.

The cascade model shows what might happen if a system is left alone. However, it
can be used to develop algorithms to “take control.” Instead of waiting for the next set
of faults to take place according to some stochastic process, one can use the cascade
model to learn how to take measurements and apply control to shed demand and to
reconfigure generator outputs and get new power flows. One can also use the model to
learn how best to create islands to protect part of the grid. Hopefully the islands are

8

small and in the rest of the grid, supply is greater than demand. Figure 6 illustrates the
point. By cutting some lines, one divides the grid into islands, hopefully a small one
and a large one, where the supply is larger than the demand.

Fig. 6: Cutting out lines creates islands and in the rest of the grid (left-most part), supply is
greater than demand. Thanks to Daniel Bienstock for the figures.

5 Repairing a Damaged Infrastructure Network

Critical infrastructure systems include transportation systems, telecom, water supply
systems, wastewater systems, electric power systems, etc. After a disruption, a system
begins to restore service until returning to a performance level at or below the level
before the disruption. A series of models that allow us to reason about infrastructure
resilience under disruptions were developed by Sharkey and Pinkley [7]. We describe
their ideas in this section. In these models, service is described by flows in networks.

In contrast to the undirected graphs we have worked with so far, in the Sharkey-
Pinkley models, a network now has vertices and directed edges (called arcs). A flow
can only go from vertex i to vertex j along an arc directed from i to j. Vertices
represent components that generate services (supply vertices), locations where one
alters the routes of the services (transshipment vertices), or components that consume
services (demand vertices). Arcs move the services from one vertex to another.

Consider for example a water supply system. The supply vertices correspond to
water companies, the transshipment vertices to substations, and the demand vertices
to households, factories, hospitals, malls, etc. Pipes are the arcs, and water is the flow.
Meeting as much demand as possible is modeled as the classical maximum flow
problem – both before and after a disruption.

Fig. 7: A water supply system with two supply vertices, three transshipment vertices, and four
demand vertices.

9

Consider a network G = (V,A) where V is a set of vertices and A a set of arcs. The arc i
to j has a capacity uij. In the simplest case, we have one supply vertex s and one
demand vertex t. There is a supply A(s) at s and a demand B(t) at t. We seek to assign
a flow xij to the arc from i to j. The flow along that arc must be at most the capacity:

xij ≤ uij.

The classic maximum flow problem assumes that we have flow conservation: The
sum of flows on arcs into a vertex equals the sum of flows out of the vertex. If A(i) =
{j: (i,j) ∊ A}, then this says:

∑ j ∊ A(i) xij = ∑ j:i ∊ A(j) xji

We also assume that the total flow out of s cannot exceed the supply A(s) and the total
flow into t cannot exceed the demand B(t). We seek to maximize the total flow that
reaches t. Thus, the Maximum Flow Problem seeks to determine the largest amount of
flow that can reach t while keeping the flow on each arc at most the capacity, not
exceeding total supply and demand, and satisfying the flow conservation requirement
at each vertex. The famous augmenting path algorithm (Ford-Fulkerson Algorithm)
finds the maximum flow.

Note that the maximum flow problem is a simplification. It assumes that there are
no other constraints on flow. This might apply to supply chain networks, for example
when physical goods move through intermediate warehouses and distribution centers.
For more complicated infrastructure, there are things like physical laws offering
additional constraints. For example, there are Kirchhoff’s and Ohm’s Laws for power
grid networks. In water distribution networks, there are constraints involving the
relation between flow of water and pressure.

Figure 8 shows a network with capacities on arcs and supply and demand at the
supply and demand vertices and Figure 9 shows the maximum flow in the network.
The flow is maximum because the flow from x to y is at most 2, so s to x is at most 2,
so out of s is at most 40.

Fig. 8: A network with capacities on arcs and supply and demand at supply and demand
vertices.

10

Fig. 9: The flow in this network is maximum.

If some of the arcs in a network are destroyed, we might ask in what order we should
reopen them. There are various possible objectives. One goal might be to get closest
to the original maximum flow as early as possible. Consider the example of Figure 10
where a lightning storm has taken out two arcs of the network of Figure 9. Assume
that the arc b to t can be repaired fully but the arc s to a can only be repaired to a
lower capacity of 15, as shown in Figure 11. That figure also shows the maximum
flow if arc s to a is fixed first and arc b to t is not yet repaired so has no capacity. The
maximum flow is 17. Figure 12 shows the maximum flow if arc b to t is fixed first and
arc s to a is not yet repaired so has no capacity. That flow is 18, which is better, so to
obtain the best flow after one repair we would repair the arc b to t first. Figure 13
shows the maximum flow once both arcs are repaired, but arc s to a only to reduced
capacity. We only regained a reduced max flow of 33 so didn’t fully restore the flow
of 40.

Fig. 10: A lightning storm takes our arcs s to a and b to t.

11

Fig. 11: Maximum flow if arc s to a is repaired to reduced capacity of 15 while arc b to t is not
yet repaired.

Fig. 12: Maximum flow if arc b to t is repaired to original capacity while arc s to a is not yet
repaired.

Fig. 13: Maximum flow if arcs s to a and b to t are repaired, the former to reduced capacity.

We made the simplifying assumption that there was one supply vertex and one
demand vertex. In practice, there are many supply vertices s1, s2, …, and demand
vertices t1, t2, …, with supply A(si) at si and demand B(ti) at ti. But we can reduce this
to a single supply and demand vertex by adding a supply vertex S with supply A(S) =
∑A(si) and an arc from S to each si with capacity A(s i) and a demand vertex T with
demand B(T) = ∑ B(ti) and an arc from each ti to T with capacity B(ti).

12

As different components of a network are repaired (to the extent possible), the
maximum flow increases. How far off it is from the original max flow when repairs
are done is one metric for resilience. How long it takes to complete the repairs is
another metric for resilience. We turn next to the repair process.

A different approach to reopening damaged components uses the theory of
machine scheduling. After a disruption, repairs are made so services can be restored.
Repairs use scarce resources: work crews, equipment. Let us make the simplifying
assumption that one can only repair one component at a time (one vertex or arc). We
need a schedule for when a resource will be repairing a component. In the scheduling
literature, we talk about jobs on a set of machines, and processing them. Jobs here
correspond to damaged components. Machines correspond to work crews. Each job
(damaged component) k has a different level of importance wk. Each job also has a
duration pk. In the scheduling literature, each job k is assigned to a machine (work
crew) mk. The jobs assigned to a machine (work crew) m are given an order. So the
completion time Ck of job k is the sum of the durations of all jobs assigned to the
machine (crew) mk that precede job k plus the duration of job k.

There are various objectives for a good repair schedule. One might be to minimize
the weighted average completion time over all jobs, with the weight measuring the
importance of the job:

min ∑k wkCk

This is sometimes called the restoration performance. If there is just one work crew, a
greedy algorithm minimizes this: Repair component k in non-increasing order of the
ratio wk/pk. A similar algorithm works if there many machines but each has the same
processing time for repairing a given component. However, in general, most such
scheduling problems are hard, NP-hard. See [7] for more details.

The problem gets even harder if there are multiple interdependent infrastructures.
In a complex city, there are many such infrastructures and they have
interdependencies. For example, as observed in [7], a subway (transportation
infrastructure) needs power (electrical infrastructure) before it can be reopened. A
hospital needs both power and water before it can be reopened. One can approach the
multiple infrastructure repair problem by studying a collection of networks, one for
each infrastructure. A given infrastructure cannot operate until there is sufficient level
of service (flow) on certain specific vertices in other infrastructures. Scheduling repair
of different infrastructures will therefore depend on these interdependencies. There is
a considerable literature on this topic. Another complication: There could be
interdependencies among repair jobs, sometimes in different infrastructures.
Scheduling repair of different infrastructures will therefore depend on these
interdependencies. Another complication: interdependencies among repair jobs –
sometimes in different infrastructures. To give an example from [7], note that to
reopen subway lines, you need to repair a line. Once you repair the lines, you need to
run a test train on the line to check for safety and quality of the repair. But power to
the line must be restored before you can run a test train. To give another example
from [7], suppose that trees bring power lines down on a road. First one needs to do a

13

safety inspection to make sure it’s safe to enter the road. Then one must clear debris
from the road. Then one can repair downed power lines. There is a considerable
literature on this and related topics. See [7] for a discussion.

6 Closing Comments

We have presented several simple examples of how to generate responses to
disruptive events. Even these simple examples lead to problems that are “hard” in a
precise sense.

Another approach is to study ways to design graphs or networks so as to make
them more resilient in case of disruption. That is a topic for another paper.

References

1. Dreyer, P.A. Jr., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical
threshold models of the spread of disease and of opinion. Discrete Applied Mathematics
157, 1615-1627 (2009).

2. Hartnell, B.: Firefighter! an application of domination, Presentation, in: 20th Conference
on Numerical Mathematics and Computing, University of Manitoba, Winnipeg, Canada,
September 1995.

3. Develin, M., Hartke, S.G., Fire containment in grids of dimension three and higher.
Discrete Applied Mathematics 155, 2257-2268 (2007).

4. Wang, P., Moeller, S.A.: Fire control on graphs. J. Combin. Math. Combin. Comput. 41,
19–34 (2002).

5. Dobson, I., Carreras, B.A., Lynch, V.E., Newman, D.E.: Complex systems analysis of
series of blackouts: Cascading failure, critical points, self-organization. Chaos 17, 026103
(2007); https://doi.org/10.1063/1.2737822

6. Dobson, I., Carreras, B.A., Newman, D.E.: A loading-dependent model of probabilistic
cascading failure. Probab. Engrg. Inform. Sci. 19(1), 15–32 (2005).

7. Sharkey, T.C., Pinkley, S.G.N.: Quantitative models for infrastructure restoration after
extreme events: Network optimization meets scheduling. In Kaper, H.G., Roberts, F.S.
(eds.),
Mathematics of Planet Earth: Protecting Our Planet, Learning from the Past, Safeguarding
for the Future, pp. 313-336, Springer, Cham (2019).

Acknowledgement: The author thanks the National Science Foundation for support
under grant CCF-1934924 to Rutgers University.

https://doi.org/10.1063/1.2737822

	1 Resilience
	2 Spread and Control of Disease
	3 Vaccination Strategies: Vaccinations and Fighting Fires
	4 Cascading Outages in the Power Grid
	5 Repairing a Damaged Infrastructure Network
	6 Closing Comments
	References
	Acknowledgement: The author thanks the National Science Foundation for support under grant CCF-1934924 to Rutgers University.

