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Abstract. Today’s complex systems are vulnerable to disruptions from natural,
deliberate,  and  accidental  events.  The  paper  explores  resilience  of  systems
under disruptions due to disease events, fires, outages in the power grid, and
damage to critical infrastructure, and describes algorithms for responding to a
disruption that minimize the departure from a previous state. 
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1 Resilience

Today’s society has become dependent on complex systems, enabled by increased
digitization  of  our  world  and  the  increasingly  ubiquitous  nature  of  intelligent
machines,  that have had a great impact on virtually all facets of our lives and our
societies: enabling our financial transactions, running our power grid, underpinning
our transportation systems, empowering our health care, supporting the rapid delivery
of  supplies  and  materials.  Yet  these  changes  have  made us  vulnerable  to  natural
disasters, deliberate attacks, just plain errors. In recent years, “resilience” of complex
natural  and  social  systems  has  become  a  major  area  of  emphasis;  resilience  in
response to hurricanes, disease events, floods, earthquakes, cyber attacks, …

The  general  concept  of  resilience  is  the  ability  of  a  system  to  recover  from
disasters or attacks and avoid catastrophic collapse. We can think of a system existing
within a “normal healthy range” as measured under some parameter or parameters. In
a resilient system, values will return to the normal healthy range after a disruption. Or
they might establish a new healthy range – one that is not that far from the previous
one. See Figure 1.

Fig. 1: A resilient system returns to its normal healthy range or one close to it.
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There are many parameters that measure a “healthy” system. Some will get back
into their normal healthy range faster than others. Do we ask that the longest time to
return to this range be small? Or that the average time to return to this range be small?
There are many such questions that we need to answer before being able to define
resilience precisely.

One approach to resilience is to develop algorithms for responding to a disruption
that will minimize the departure from the previous state when things settle down.
Another is to design systems that can bounce back from disruptions quickly. In this
paper we will emphasize the former. We will illustrate this with four examples built
around  models  using  graphs  and  networks  and  will  present  “toy”  examples  that
illustrate the main points about how algorithms might help in creating more resilient
systems: containing the spread of disease, mitigating the effect of fires, controlling
cascading outages in the power grid, and reopening a damaged infrastructure network.

2 Spread and Control of Disease

The  spread  of  the  new  Coronavirus  COVID-19  is  the  latest  (and  most  drastic)
example of a newly emerging disease that threatens not only lives but our economy
and our social systems. SARS, MERS, Ebola, and Zika are other recent examples.
Modern transportation systems allow for rapid spread of diseases. Diseases are spread
through social networks.  “Contact tracing” is an important part  of any strategy to
combat outbreaks of infectious diseases, whether naturally occurring or resulting from
bioterrorist attacks. We will illustrate the ideas with some fairly simple ”toy” models
that will illustrate concepts of resilience.

We model  a  social  network as  an undirected  graph.  The vertices  of  the graph
represent people and there is an edge between two people if they are in contact. We
imagine that the vertices are in different states at different times. In the simplest “toy”
model, there are two states, a susceptible state that we will represent with a green
vertex  and  an  infected  state  that  we  will  represent  with  a  red  vertex.  Times  are
discrete: t = 0, 1, 2, … Let si(t) give the state of vertex i at time t. This is sometimes
called an SI model. More complex models might include susceptible S, exposed E,
infected I, recovered R, and possibly split by age group, sex, etc.: SI, SEI,  SEIR
models, ...

We will consider a very simple process called an Irreversible k-Threshold Process
in which an individual changes their state from green to red at time t+1 if at least k of
their neighbors are in state red at time t. Moreover, an individual never leaves state
red. The disease interpretation is that an individual is infected if sufficiently many of
their neighbors are infected. In the special case k = 1, an individual is infected if any
of their neighbors is infected. Figure 2 describes an irreversible 2-threshold process. It
shows how the disease spreads from two infected vertices at time 0 to four at time 1,
because each of the two new infected vertices had two infected neighbors. After that,
no  more  spread  can  occur  since  the  remaining  uninfected  vertices  have only one
infected neighbor.  Figure 3 describes an irreversible 3-threshold process. Two of the
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green vertices turn red at time 1 since they have three red neighbors at time 0, but the
third does not. It turns red at time 2 because at time 1 it now has three red neighbors. 

A great  deal  of attention has been paid to a saturation problem, the  Attacker’s
Problem: Given a graph, what subsets S of the vertices should we plant a disease with
so that ultimately the maximum number of people will get it? This has an economic
interpretation:  What  set  of  people  do  we  place  a  new product  with  to  guarantee
“saturation” of the product in the population?

 
Fig. 2: An irreversible 2-threshold process.

Fig. 3: An irreversible 3-threshold process.

These  problems  are  hard  in  a  formal  sense.  Consider  the  problem  called
IRREVERSIBLE k-CONVERSION SET:  Given a positive integer  p and a graph  G,
does  G have a set  S  of size at most  p so that if all vertices of  S  are infected at the
beginning,  then  all  vertices  will  ultimately  be  infected?  Dreyer  and  Roberts  [1]
showed that 
IRREVERSIBLE k-CONVERSION SET is NP-complete for fixed  k > 2. For many
more results about irreversible k-conversion sets, see [1].

There  are  various  complications  that  have been  considered  in  this  model.  For
example,  one  could  take  k =  1,  but  a  person  only  gets  infected  with  a  certain
probability. Or, a person is automatically cured after being in the infected state for d
time periods.  Or,  a public health authority could have the ability to “vaccinate” a
certain number of vertices, making them immune from infection. It is the vaccination
strategy that relates to the resilience question and it is natural to ask: Can we find
vaccination strategies (algorithms) that minimize the number of people who get sick,
i.e.,  minimize  departure  from  the  normal.  It  is  also  natural  to  ask:  Can  we  find



4

vaccination  strategies  that  minimize  the  amount  of  time  before  an  outbreak  is
controlled, i.e., minimize time to return to normal. We turn to these questions next.

3 Vaccination Strategies: Vaccinations and Fighting Fires

Mathematical models are very helpful in comparing alternative vaccination strategies.
The  problem is  especially  interesting  if  we  think  of  protecting  against  deliberate
infection by a bioterrorist attacker but applies if we think of “nature” as the attacker.
Another  simple  toy  example  considers  an  irreversible  k-threshold  model  where  a
defender can vaccinate v people per time period but an attacker can only infect people
at  the  beginning.  We might  ask:  What  vaccination  strategy  minimizes  number  of
people infected? This is also sometimes called the firefighter problem. Here, we think
of  a  forest  or  a  city  where  a  fire  spreads  to  neighboring  trees  or  buildings  and
firefighters can be placed at trees or buildings each time period to try to control the
fire. We alternate fire spread which occurs according to an irreversible  k-threshold
model, and firefighter placement. It is usually assumed that k = 1 and we will assume
this.  The  firefighter  problem  goes  back  to  Hartnell  [2].  A  variation  has  the
firefighter/vaccinator  and  fire/infector  alternate  turns,  having  v new firefighters  to
place/vaccination doses to give per time period and i new fires/new doses of pathogen
per period. What is a good strategy for the firefighter/vaccinator?

Figure 4 illustrates the firefighter model with k = 1 (catch fire/get infected if one
neighbor is on fire/infected) and v = 3 (you can place three firefighters/vaccinate three
people each time period.)  In successive grids, either the fire (disease) spreads or one
places firefighters (doses of vaccine).  It takes four time periods and 11 firefighters
(vaccinations) to control the fire (disease outbreak).

    
        t=0                                       t=1
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       t=1                                  t=2

   
                 t=2                                   t=3

   
                 t=3                                   t=4

 Fig. 4: The firefighter model with k = 1, v = 3. Thanks to Kah Loon Ng for help with this 
figure.

There are many resilience questions that can be asked. Can the fire (epidemic) be
contained? How many time steps are required before fire (epidemic) is contained?
How many firefighters (doses of vaccine) per time step are necessary? What fraction
of all vertices will be saved (burnt/infected)? Does where the fire (disease) breaks out
matter? What if the fire (disease) starts at more than one vertex?

Consider the case of an infinite d-dimensional grid. With d = 2 (similar to the grids
in Figure 4), it is easy to see that a fire (disease outbreak) cannot be controlled with
one firefighter (vaccine dose) per time period. With d = 2 and v = 2 (two firefighters or
vaccinations per time period), one can show that a fire (disease) starting at one vertex
can be controlled in eight time steps, with 18 trees burned (people infected). Develin
and Hartke [3] showed that one cannot do better than 18 steps and Wang and Moeller
[4] that one cannot contain the fire (disease outbreak) in less than eight steps. If d  3,
note that every vertex has 2d neighbors. Thus: 2d-1 firefighters (vaccine doses) per
time step are sufficient to contain any outbreak starting at a single vertex. Develin and
Hartke [3] showed that if d  3, 2d – 2 firefighters (vaccine doses) per time step are
not enough to contain an outbreak. However, with 2d – 1 firefighters (doses) per time
step containment can be attained in two time steps. This is just one example of a
result, and there is an extensive literature on the firefighter problem by now.

There are many variants of the irreversible k-threshold model that would make the
firefighter problem more realistic. A vertex could stay in the burning (infected state)
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for T time periods after entering it and then go back to the non-burning (uninfected)
state  –  which is  more appropriate  for  the disease  application than  the firefighting
application.  We could explore the strategy of bringing in a firefighter (vaccinating a
person) once  k-1 neighbors are burning (infected).  We could consider  the case of
starting to burn (getting infected) with a certain probability if a neighbor is burning
(infected).  We  could  consider  the  case  where  firefighters  are  only  successful  at
blocking  a  fire  at  a  vertex  (vaccines  are  only  successful  at  protecting  against  a
disease) with a certain probability. The amount of time you remain burning (infective)
could also exhibit a probability distribution. 

4 Cascading Outages in the Power Grid

Today’s  electric  power systems operate  under considerable uncertainty.  Cascading
failures  can  have  dramatic  consequences,  including  widespread  blackouts.  How
resilient is the power grid? How can we design “control” procedures so that the power
grid can quickly and efficiently respond to disturbances and quickly be restored to its
healthy state? Grid disruptions can cascade so fast that a human being may not be able
to react fast enough to prevent the cascading disaster, leading to a major blackout. We
are dependent on rapid response through algorithms. We need fast, reliable algorithms
to respond to a detected problem. The algorithm should not necessarily require human
input, has to be able to handle multiple possible “solutions,” and has to be able to
understand what to do if all possible solutions are “bad.”

One tool of interest is the cascade model of Dobson, et al. [5,6]. In this model, an
initial “event” takes place, then demands and generator output levels are reconfigured,
new power flows are instantiated, the next set of faults takes place according to some
stochastic  model,  and  the  process  repeats  with  reconfiguration  of  demands  and
generator output levels.

The power grid model is not the same as a disease-spread model. Energy flows
from generators through power lines (edges in the power grid graph). Each edge has a
maximum capacity.  When a vertex (substation) or edge (transmission line) outage
occurs,  power reroutes according to physical laws (Kirchhoff’s Law, Ohm’s Law).
Because of the rerouting, flows on parallel paths are increased. This could cause an
overload in a distant transmission line. So failures can take place non-locally. Figure
5 demonstrates the model. In (b), there are a lightning strike and a fire, leading to
destruction of the two lines (seen in (c)). This leads to increased flows on some lines
(d) and loss of some more lines (e). Some demand is lost at yellow vertices in (f).
More lines are lost (g) and more demand is lost (h).
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(a)                                 (b)

  increased flow

               (c)                                    (d)

   
                (e)                                    (f)

 
                (g)                                    (h)

Fig. 5: The cascade model for power grids. Red edges show increased flow. Yellow nodes 
show lost demand. Thanks to Daniel Bienstock for the figures.

The cascade model shows what might happen if a system is left alone. However, it
can be used to develop algorithms to “take control.” Instead of waiting for the next set
of faults to take place according to some stochastic process, one can use the cascade
model to learn how to take measurements and apply control to shed demand and to
reconfigure generator outputs and get new power flows. One can also use the model to
learn how best to create islands to protect part of the grid. Hopefully the islands are
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small and in the rest of the grid, supply is greater than demand. Figure 6 illustrates the
point. By cutting some lines, one divides the grid into islands, hopefully a small one
and a large one, where the supply is larger than the demand.

Fig. 6: Cutting out lines creates islands and in the rest of the grid (left-most part), supply is 
greater than demand. Thanks to Daniel Bienstock for the figures.

5 Repairing a Damaged Infrastructure Network 

Critical infrastructure systems include transportation systems, telecom, water supply
systems, wastewater systems, electric power systems, etc. After a disruption, a system
begins to restore service until returning to a performance level at or below the level
before the disruption. A series of models that allow us to reason about infrastructure
resilience under disruptions were developed by Sharkey and Pinkley [7]. We describe
their ideas in this section. In these models, service is described by flows in networks. 

In contrast to the undirected graphs we have worked with so far, in the Sharkey-
Pinkley models, a network now has vertices and directed edges (called arcs). A flow
can only go from vertex  i to  vertex  j along  an arc  directed  from  i to j.  Vertices
represent components that  generate services  (supply vertices),  locations where one
alters the routes of the services (transshipment vertices), or components that consume
services (demand vertices). Arcs move the services from one vertex to another.

Consider for example a water supply system. The supply vertices correspond to
water companies, the transshipment vertices to substations, and the demand vertices
to households, factories, hospitals, malls, etc. Pipes are the arcs, and water is the flow.
Meeting  as  much demand as  possible  is  modeled  as  the  classical  maximum flow
problem – both before and after a disruption.

Fig. 7: A water supply system with two supply vertices, three transshipment vertices, and four 
demand vertices.
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Consider a network G = (V,A) where V is a set of vertices and A a set of arcs. The arc i
to  j has a  capacity uij.  In the simplest case,  we have one supply vertex  s and one
demand vertex t. There is a supply A(s) at s and a demand B(t) at t. We seek to assign
a flow xij to the arc from i to j. The flow along that arc must be at most the capacity: 

xij ≤ uij.

The classic maximum flow problem assumes that we have  flow conservation:  The
sum of flows on arcs into a vertex equals the sum of flows out of the vertex. If A(i) =
{j: (i,j) ∊ A}, then this says:

∑ j ∊ A(i) xij   =  ∑ j:i ∊ A(j) xji

We also assume that the total flow out of s cannot exceed the supply A(s) and the total
flow into t cannot exceed the demand B(t). We seek to maximize the total flow that
reaches t. Thus, the Maximum Flow Problem seeks to determine the largest amount of
flow that can reach  t while keeping the flow on each arc at most the capacity,  not
exceeding total supply and demand, and satisfying the flow conservation requirement
at each vertex. The famous augmenting path algorithm (Ford-Fulkerson Algorithm)
finds the maximum flow. 

Note that the maximum flow problem is a simplification. It assumes that there are
no other constraints on flow. This might apply to supply chain networks, for example
when physical goods move through intermediate warehouses and distribution centers. 
For  more  complicated  infrastructure,  there  are  things  like  physical  laws  offering
additional constraints. For example, there are Kirchhoff’s and Ohm’s Laws for power
grid  networks.  In  water  distribution  networks,  there  are  constraints  involving  the
relation between flow of water and pressure. 

Figure 8 shows a network with capacities on arcs and supply and demand at the
supply and demand vertices and Figure 9 shows the maximum flow in the network.
The flow is maximum because the flow from x to y is at most 2, so s to x is at most 2,
so out of s is at most 40.

Fig. 8: A network with capacities on arcs and supply and demand at supply and demand 
vertices.
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Fig. 9: The flow in this network is maximum.

If some of the arcs in a network are destroyed, we might ask in what order we should
reopen them. There are various possible objectives. One goal might be to get closest
to the original maximum flow as early as possible. Consider the example of Figure 10
where a lightning storm has taken out two arcs of the network of Figure 9. Assume
that the arc  b to  t can be repaired fully but the arc  s to  a can only be repaired to a
lower capacity of 15, as shown in Figure 11. That figure also shows the maximum
flow if arc s to a is fixed first and arc b to t is not yet repaired so has no capacity. The
maximum flow is 17. Figure 12 shows the maximum flow if arc b to t is fixed first and
arc s to a is not yet repaired so has no capacity. That flow is 18, which is better, so to
obtain the best flow after one repair we would repair the arc  b to t first. Figure 13
shows the maximum flow once both arcs are repaired, but arc s to a only to reduced
capacity. We only regained a reduced max flow of 33 so didn’t fully restore the flow
of 40.

Fig. 10: A lightning storm takes our arcs s to a and b to t.
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Fig. 11: Maximum flow if arc s to a is repaired to reduced capacity of 15 while arc b to t is not 
yet repaired.

Fig. 12: Maximum flow if arc b to t is repaired to original capacity while arc s to a is not yet 
repaired.

Fig. 13: Maximum flow if arcs s to a and b to t are repaired, the former to reduced capacity.

We  made  the  simplifying  assumption  that  there  was  one  supply  vertex  and  one
demand vertex. In practice,  there are many supply vertices  s1,  s2,  …, and demand
vertices t1, t2, …, with supply A(si) at si and demand B(ti) at ti. But we can reduce this
to a single supply and demand vertex by adding a supply vertex S with supply A(S) =
∑A(si) and an arc from S to each si with capacity A(s i) and a demand vertex T with
demand B(T) = ∑ B(ti) and an arc from each ti to T with capacity B(ti).  
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As different components of a network are repaired (to the extent possible),  the
maximum flow increases. How far off it is from the original max flow when repairs
are done is one metric for resilience. How long it takes to complete the repairs is
another metric for resilience. We turn next to the repair process. 

A  different  approach  to  reopening  damaged  components  uses  the  theory  of
machine scheduling. After a disruption, repairs are made so services can be restored.
Repairs use scarce  resources: work crews, equipment. Let us make the simplifying
assumption that one can only repair one component at a time (one vertex or arc). We
need a schedule for when a resource will be repairing a component. In the scheduling
literature, we talk about jobs on a set of machines, and processing them.  Jobs here
correspond to damaged components.  Machines correspond to work crews. Each job
(damaged component)  k has a different level of  importance wk. Each job also has a
duration pk. In the scheduling literature, each job  k is assigned to a machine (work
crew) mk. The jobs assigned to a machine (work crew) m are given an order. So the
completion time Ck of job  k is the sum of the durations of all jobs assigned to the
machine (crew) mk that precede job k plus the duration of job k.

There are various objectives for a good repair schedule. One might be to minimize
the weighted average completion time over all jobs, with the weight measuring the
importance of the job:

min ∑k wkCk

This is sometimes called the restoration performance. If there is just one work crew, a
greedy algorithm minimizes this: Repair component k in non-increasing order of the
ratio wk/pk. A similar algorithm works if there many machines but each has the same
processing time for  repairing a given component.  However,  in general,  most such
scheduling problems are hard, NP-hard. See [7] for more details.

The problem gets even harder if there are multiple interdependent infrastructures.
In  a  complex  city,  there  are  many  such  infrastructures  and  they  have
interdependencies.  For  example,  as  observed  in  [7],  a  subway  (transportation
infrastructure)  needs power (electrical  infrastructure)  before it can be reopened.  A
hospital needs both power and water before it can be reopened. One can approach the
multiple infrastructure repair problem by studying a collection of networks, one for
each infrastructure. A given infrastructure cannot operate until there is sufficient level
of service (flow) on certain specific vertices in other infrastructures. Scheduling repair
of different infrastructures will therefore depend on these interdependencies. There is
a  considerable  literature  on  this  topic.  Another  complication:  There  could  be
interdependencies  among  repair  jobs,  sometimes  in  different  infrastructures.
Scheduling  repair  of  different  infrastructures  will  therefore  depend  on  these
interdependencies.  Another  complication:  interdependencies  among  repair  jobs  –
sometimes  in  different  infrastructures.  To  give  an  example  from [7],  note  that  to
reopen subway lines, you need to repair a line. Once you repair the lines, you need to
run a test train on the line to check for safety and quality of the repair. But power to
the line must be restored before you can run a test train. To give another example
from [7], suppose that trees bring power lines down on a road. First one needs to do a
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safety inspection to make sure it’s safe to enter the road. Then one must clear debris
from the road.  Then one can  repair  downed power  lines.  There  is  a  considerable
literature on this and related topics. See [7] for a discussion.

6 Closing Comments

We  have  presented  several  simple  examples  of  how  to  generate  responses  to
disruptive events. Even these simple examples lead to problems that are “hard” in a
precise sense. 

Another approach is to study ways to design graphs or networks so as to make
them more resilient in case of disruption. That is a topic for another paper.
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