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Abstract. Perception systems for autonomy are most useful if they can
operate within limited /predictable computing resources. Existing algo-
rithms in robot navigation—e.g. simultaneous localization and mapping—
employ concepts from filtering, fixed-lag, or incremental smoothing to
find feasible inference solutions. Using factor graphs as a probabilis-
tic modeling language, we emphasize the importance of marginaliza-
tion operations on the equivalent Bayes (junction) tree. The objective is
to elucidate the connection between simple tree-based message passing
rules with the aforementioned state estimation approaches, and their fre-
quently overlooked relation to direct marginalization on the Bayes tree.
We characterize the inherent marginalization operation as part of the
fundamental Chapman-Kolmogorov transit integrals which unifies many
state-of-the-art approaches. The belief propagation model is then used
to define five major tree inference strategies, with regard to computa-
tion recycling and resource constrained operation. A series of illustrative
examples and results show the versatility of the method.

Keywords: localization, mapping, robotics, Bayes tree, junction tree,
Bayes network, Chapman-Kolmogorov, belief propagation, sum-product

1 Introduction

Autonomous systems such as mobile robots or smart factories require a percep-
tion system to adequately understand its surroundings and perform meaningful
tasks. To this end, such systems employ a combination of sensors that collect
data of itself and its environment. Inference algorithms then analyze this data to
localize, map, and extract semantic understanding of the world in a timely man-
ner. Real-time use-cases impose additional resource constraints on the system’s
inference requirements.

*Equal contribution.
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Established estimation approaches, such as filtering or fixed-lag smoothing,
reduce computational load by marginalizing previous information into a poste-
rior of a few select states (variables), thereby concentrating the history of mea-
surements into only a few variables. State-of-the-art incremental smoothing and
mapping (iISAM) algorithms, such as iISAM2 [I7], factorize a factor graph [20]
probabilistic model into an Bayes tree [L6]—similar to a junction tree [I5]—which
allows for more efficient computations.

This work aims to characterize marginalization and incremental operations
on a Bayes tree and elucidate their connection to existing estimation strategies.
The contributions of this paper are: i) illustrate the connection between the fun-
damental Chapman-Kolmogorov transit equation [26] and message passing on
the Bayes tree [6]; ii) analysis and characterization of the resulting marginaliza-
tion operations for recycling computations on the tree-based data structure; iii)
highlight the simplicity of reasoning about message passing on the Bayes tree and
thereby unify existing estimation methods in a common probabilistic language;
iv) to show how the proposed approach can be a unifying framework for the
aforementioned estimation approaches; and v) present a description with exam-
ple results to aid future algorithm development beyond the common parametric
Gaussian assumption.

The remainder of the paper is organized as follows: Section [2| provides back-
ground and preliminaries to describe the scenario within the context of related
work, which is presented in Section [3] The problem is formulated in Section []
in terms of factor graphs, the Bayes tree, and Chapman-Kolmogorov integrals,
which form the basis for defining the proposed generalized recycling operations
on the tree. In Section[f] a canonical illustration is shown by means of a toy prob-
lem, and further results from a common simultaneous localization and mapping
(SLAM) dataset are analyzed. Finally, we conclude with Section [6]

2 Problem Formulation and Background

Combining the various data sources in time to produce reliable consensus on
the state of the system and its surroundings is a computationally intensive and
complicated task—commonly known as SLAM [5] 21]. This scenario serves as a
good proxy for many resource constrained inference tasks beyond robotics.

A major challenge in SLAM is reliable sensor fusion that can extract the max-
imum amount of information about the world while maintaining control over the
computational resource requirements. Surrounding variables of interest and sen-
sor data are encoded into a joint probability model using factor graphs [4, 20].
Factor graphs, illustrated in Figure [l are bipartite graphs of variables and fac-
tors. Each of the variables ©®; exist on a manifold domain Z=; and represents
(possibly hidden) states or parameters of interest. These include landmark fea-
tures L = {I € R?}, robot positions and orientation X = {z € SE(3)} [4], sensor
calibration K = {6k € Ek}, and many more.

While exploring the world, a robot incrementally collects sets of measure-
ments Z = {z1,} at each time step ¢. Each measurement is modeled by a
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Fig. 1. A sample factor graph denoting a set of poses x; and an unknown landmark
l; as the variables nodes (@ = {zo:,l1}), and three distinct types of factors (F =
{¥1:6, p1:2,91}). The shaded nodes correspond to the marginalized variables of the
example presented in Section [5.1

measurement function ¢; (6;,z;) over a subset of variables @;. These func-
tions are used to construct a probabilistic likelihood model, or factor, py, =
p(Zy, = 24, | ©;) € P, where P denotes the space of all allowable (conditional)
probability density functions. The union of all likelihoods is called the set of
factors F = |J; pe, (see Figure|l|caption for an example).

The inference problem can be formulated as a joint probability distribution
through a unifying product of all individual likelihoods ¢ and priors j. The vari-
ables @, factors F, and edges £ encode the factor graph G = {F, 0,E}.

p(012) = [p (210 [106)) x g x[p(ze100) [To(®). (1)

where @Q represents the factor graph’s partition function, taken as constant due
to an independence assumption [20]: we assume that any measurements z;, z,
where VI,I’ € i,j, are taken from statistically independent processes Z;, Z
given the factor graph model G. For example, stereo camera images produce
independent monocular measurements ¢; given the modeled extrinsics while ig-
noring common power supply noise; similarly for priors ¢;, GPS filter ouputs
could be taken with sufficient time separation to have negligible correlation (as-
suming a loosely coupled architecture) [I1]. This allows a further simplification
to the unnormalized joint probability function.

By the chain rule, this product of independent measurements Z—through
likelihoods p ( z¢, | @; ) and variable prior potentials p(@;)—represents the un-
normalized, non-Gaussian posterior joint probability density [20]. The inference
task therefore requires a system inversion by estimating the belief over state vari-
ables given the datap(Z|© ) — p (@ |Z) € P that was likely to have produced
the received measurements Z at each time t.

Typically, the maximum-a-posteriori estimate ©* = argmaxep (O |Z) is
sought, however, eq. allows us to pursue something more general; we are in-
terested in directly computing the full posterior marginal beliefs of each variable
in the joint distribution, that is, an entire function and not just a parametric
point representation.
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3 Related Work

While filters [32] offer constant-time updates, they do not scale well in augmented
state configurations given the need to track correlations between variables us-
ing a dense covariance matrix, as is the case with EKF-SLAM [29] approaches.
Extensive previous work shows that the most efficient inference methods ex-
ploit structure and sparsity within the problem [4]. Cyclic factor graphs are well
suited for modelling heterogeneous sensor data collection, but do not, however,
immediately admit simple inference of variable beliefs. For example, loopy belief
propagation approaches [25] are expensive for large systems [30].

One avenue is to factorize the joint model factor graph into an acyclic tree
representation. Several tree factorizations have been proposed including elimi-
nation, cluster, bucket, rake-compress [19], junction trees [I5], and more. Tree-
structured representations are desirable because trees encode an exact equivalent
of the original factor graph in the form of an acyclic graph. One significant ex-
ample is the Thin Junction Tree Filter (TJTF) algorithm by Paskin [23], for
which computational complexity can be controlled.

Around the same time, and despite the similarities in structure to Paskin’s
TJTF, Frese’s Treemap algorithm [9] was independently developed to address
similar concerns: bounded uncertainty, linear storage space, and linear update
cost. Fundamentally, treemap is different from TJTF in that it does not tradeoff
information for computation time but instead uses a hierarchical tree partition-
ing strategy [10]. The Bayes tree [16]—developed for robotic navigation—is a
specialized junction tree used in iISAM2 [I7], hybrid-discrete [27], multimodal-
iSAM [6, [7], and multi-hypothesis iSAM2 [I3] variants. The Bayes tree is based
on a globally selected variable ordering (a known NP-hard problem [I]) by well
established pivoting algorithms from matrix system solvers, such as approximate
minimum degree (AMD) [3].

The transformation of a factor graph into a Bayes tree is described in [I6],
and pictorially summarized in Figure 2] The factorization mainly consists of
two steps: the construction of a chordal Bayes net [24] by means of a bipartite
elimination game [12]—requiring a specific variable ordering—and the discovery
of cliques through mazimum cardinality search [2§]. The elimination process is
represented in Figure [2| by the transformation between the first two graphs.

There are several benefits for performing inference on an acyclic Bayes tree
factorization of the joint distribution rather than on the original graph itself [16,
18, 23]: the tree structure here implies an exact factorization representing the in-
herent conditional independence structure between all the variables, and thereby
encodes the minimum set of update steps required to find variable posteriors.
This fact is exploited by the (non-Gaussian) multimodal-iSAM algorithm [6l, [7].

Williams et al. [31] investigate some benefits of concurrent filtering and
smoothing using the Bayes tree, but their work does not relate to explicit
marginalization of variables beyond the existing iISAM2 incremental updates.
Later work in variable selection [14] 22] uses information content to identify
which variables are the most valuable and then reduces the SLAM problem size
accordingly. These methods, however, require modification of the factor graph
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before inference. In contrast, our approach presented below illustrates how the
Bayes tree can be used to handle similar operations natively within the tree
structure as part of a normal single stage factor graph to tree inference process.

4 Method

4.1 General Inference Using the Bayes Tree

This section describes the inference process as tree-based message passing oper-
ations which will serve as the foundation for selective message passing strategies
in later sections. The development follows a sum-product approach outlined by
the multimodal-iISAM algorithm [6], which allows general non-Gaussian/multi-
modal likelihoods to be considered as part of the Bayes tree solution. The dis-
cussion applies equally to Gaussian belief propagation, and in the linear case is
analogous to Cholesky/QR factorization in matrix systems [16] [17].

The full joint probability distribution p (@ |Z) is factorized by the Bayes
tree (by extracting cliques from the associated Bayes net) which represents the
product of conditional distributions, with one conditional for each clique Cy

p(O1Z)x [[ p(OrklOsk zi+). (2)
k={C}

Cliques are expressed in the form of separator ®g ;, and frontal @ variables:
that is, separators are the intersection with the parent clique @g; = Cy N Cy/,
and remaining frontals @p = C\Og i [16]. The set of measurements in each

bipartite elimination game

factor graph chordal Bayes net
E)—(=)

7N
@</@

va
2 © P‘—@
n
Ordering: {xo. 2, @4, 6, 1,11, @5, T3} \ /
maximum

i i ardinalit;
sqrt info matrix . cardinality
(Gaussian only) Bayes (Junctlon‘) tree search

color-coded

Ty T2 Ty T Xy 1) T5 X3

X3 X5 X5

AN

=~ equivalence

Fig. 2. Pictorial depiction of the steps needed to transform the factor graph from
Figure [l| to a Bayes tree representation given a variable ordering.
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clique k is given by z.+. Finding these cliques in the original joint probability
model eq. is equivalent to grouping statistically dependent variables and
factors together (exploiting commutativity of functions from P):

P(Ory|Og i, zp+ ) X H p(zi|Oy) H p(6y). (3)
' €Fp(Cy) j'€Fr(Ck)

The probability in eq. represents a subset of factors Fg (Cf) from the orig-
inal factor graph that are directly associated with the frontal variables @ .
This implies that a clique’s frontal variables @f ) are rendered conditionally
independent from the rest of the graph given the separator g j.

4.2 Characterizing Marginalization on the Bayes Tree

Consider a complete batch solve over the entire tree which would naively in-
volve finding the best estimates (posteriors) for all variables from data p (@ |Z)
— as discussed in Section [2| In general, computing the entire joint posterior is
hopelessly complicated since the fully generalized solution may have exponential
complexity in the dimension of the problem; finding marginal posteriors over
each of the cliques is much more feasible [6].

Consider the theoretical operation of marginalizing out all variables except
O, from the joint probability distribution in eq. 7 with the shorthand z4, =
z;. The root clique k = 1 in the Bayes tree is somewhat special as having only
frontal variables @ ; and an empty separator, @g; = &. Using the Bayes tree
joint factorization from eq. , the expression for the root’s posterior takes the
form

P(@F,l‘z)OC/_HP(@F,k|@S,k7Zk+)d\@F,la (4)
=%

where \@p 1 expresses all variables except those in the root frontals. From eq. ,
marginalizing all but @F; produces a unique cascading result in the factorized

joint from eq. :

Za

=3

p(@F,1|Z)O</ p(@F,2|@s,2722)/ P(OFr3|Os3,23) ... dOFp3 X

/ P(Ork|Osy,21) ... dOFp dOF . (5)

=k

mME|Y,,

where each integral (marginalization) term in the equation corresponds to the
summarized information of an upward marginalization message myy, , €q. .

The leaf cliques have no children and can therefore be calculated first using
eq. . Working upwards from leaves to the root, all the measurements Zj+
pertaining to cliques Cj and lower down the tree are collected in the variable
Y, = {Uf_ﬂ€ 2z;}, where index k goes from the leaf L to the current clique
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k. For the case of a leaf clique, we have Y = zi, and at the root we have all
measurements Y; = z. To summarize, given a clique Cy with a parent clique
Cy, the upward message takes the form of a sum-product computation, eq. @

The density myy (Os,x) obtained from this marginalized clique product is
passed up the tree as another belief message to the next parent clique, and is
analogous to eq. (10) in Kaess et al. [I6]. The parent clique then repeats the
process as illustrated in Figure[3] The product and marginalization of potentials
continue up the tree until the root node is reached. Since the root has no parent
clique, a marginal of the full system posterior density has been obtained. These
steps compute all the integrals and products listed in the marginal joint proba-
bility density shown in eq. , where O > must be marginalized last but other
variables, such as O 3, can be marginalized sooner.

4.3 Chapman-Kolmogorov and Generalized Belief Propagation

Each of the distributed marginalizations represent the upward message at each
clique in the tree. Note that the marginalization (integral) operations of variables
are over their respective variable manifold [8] domains 6 € Zj. Each clique is
a partial joint posterior over all clique variables, p (Oc x| Yi ) =My € P:

Ck

Ck
My (Ock) < [[ p(Zs|60) H p(0;) [ muy (Os.)- (6)

il

The marginalized message on separator Gg, is sent to the parent clique
My (Osk) =p(Osk | Yi) = L My (Bc,k) dOF k. (7)
=k

Eqgs. through show the sum-product approach to inference, and eq.
is a specific instance of the much more general Chapman-Kolmogorov transit
integral [26] (which simultaneously describes familiar Bayesian filtering):

p(@S,k|Yk)O(/

=F.k

P(Ork|Os i, L+ )Hp(@s,u 1Y, )dOFrk, (8)

where the clique conditional was defined in eq. and with child cliques u as per
Figure |3l Within this context, the role of inference is to compute all messages
such that the belief myy (Os,x) for any clique Cy can be obtained.

Practical computation of the Chapman-Kolmogorov transit integral depends
on the types of beliefs and messages used in the factor graph. These operations
are underpinned by various convolutions and products of infinite functions [6],
as shown by eq. @ Simplifications to the Chapman-Kolmogorov equations are
commonly performed using a max-product type approach, for example using
linearized Gaussian beliefs and finding the parametric extremum (i.e. mean) of
the negative log which results in a non-linear least squares as used in iSAM?2 [I7].
Other non-parametric methods [7] try to preserve the full belief estimates, and
results presented hereafer will all use the multimodal-iISAM algorithm [6] to
perform numerical calculations.
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4.4 Clique Recycling Strategies

We propose computational controls (similar to out-marginalization in conven-
tional augmented filtering or fixed-lag) that are available through basic symbolic
operations on the tree after a complete factor graph has been built. Five closely
related strategies with different advantages are presented: 1) a full batch so-
lution; 2) varying downward belief propagation; 3) upward marginalization by
criteria; 4) incremental belief propagation; and 5) combination of 2, 3, and 4.
We show that the iSAM2 [I7] approach is a special case of 2 and 4, and pos-
tulate that strategy 5—i.e., naturally incorporating fixed-lag with incremental
reuse and downward selection—offers the most versatile resource constrained
solution. Each case is illustrated with a canonical example in Section [5.1

The suggested approach allows the user to simply add all information to the
factor graph once and let the solver adapt to fit the available computational
resources. An added benefit is that full access to all five message strategies are
maintained at all times. The suggested approach does not require preemptive
modification of the factor graph as has been required in previous methods.

The calculation of upward messages will depend on the types of variables in-
side a clique, with three identified possibilities: variables for which a belief exists
and an update is not required; variables for which no belief exists or an update
is requested; or a combination thereof, producing a standard, fully marginalized,
or partially marginalized clique, respectively. Each case is illustrated in Figure

fully marginalized

standard partially marginalized

Cr= xc : {ma, x5}
CA ey, (81) = | planan,ac| Y1) dac-
xc

Fig. 3. Left: Clique cases to be handled when carrying out intra-clique operations.
Right: showcases the role of marginalization messages during the upward solve.

Fully Marginalized Clique is the case where all variables in a clique are
marked for marginalization and have all previously been inferred as frontal vari-
ables in a downsolve step. Since variable beliefs will not be updated, the only
required operation is calculating the upward belief message myy using eq. .

If older factor graph information lands downwards in the tree, a boundary can
be found where no changes happen below that point. A previous identical mes-
sage Mgy (Os,;) can be used and transmitted up to the clique’s parent, which
can then immediately incorporate it in its Chapman-Kolmogorov computation
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as shown in eq. @ By limiting upward propagation of information from that
boundary, all information lower down is effectively marginalized—analogous to
causal HMMs. Sliding window operation is achieved by considering belief mes-
sage passing onhy from boundaries of fully marginalized cliques. Stale portions
of the tree below the boundary cliques can be deleted, archived, or simply not
loaded as part of the tree factorization.

It is also possible to have fully marginalized parent cliques when inference still
needs to occur in child cliques below them (shown later in Figure . This simply
means that upward messages will not be propagated into the marginalized par-
ent, but downward messages from the parent will be used in the unmarginalized
child clique calculations as they usually would in a full batch solve case.

Partially Marginalized Cliques have some but not all variables marked
for marginalization. Variables marked for marginalization (and which have previ-
ously been downsolved as a frontal) should not be updated during the Chapman-
Kolmogorov computations, but their existing value should be used to influence
surrounding variables which are not marked as frozen.

As an example illustration of solving a specific Chapman-Kolmogorov case,
take clique Cy, = ¢ : x4, xp from Figure[3] Given existing beliefs x4, zp, xc =
Tq, 2y, T, we can build the posterior My y, (Z¢,Zq,%5) and use @ to get the
belief message while recalculating only the non-marginalized variables

gy (4, 8) = / My, (B, s, &0) dac )
T

This marginalized message can be incorporated into the parent’s partial posterior
computation as one of the right-most terms in eq. @

Again, using clique Cj from the example in Figure [3] we can focus on the
case where the separator variable xp is marked for marginalization, but x4 and
xc are still to be updated. With a previous estimate g = Z3, the goal is to
compute the belief message

myy (Ta, T3 = Tp) =/ Myy, (2,23 = 2y, x0) dac.
xCc

Using local likelihoods and priors from the clique, the partial posterior becomes

My, (za, 20, xB) = p (23| 2B, 20 ) p (22 | TA, TC ) P2, (TA).

For example, only one factor p (23 | xp, xc ) involves the now fixed variable
xp. The influence on the marginalized variable, coupled with the measurement
z3, needs to be represented in the remaining variables. Thus, a convolution step
from fixed Zp

p(z3|xp,xc)p(xp =2p) X p(TC, 2B = 21 | 23)

yields the following expression for the partial posterior, where we compute the
joint on x4, xc but not re-solve marginalized xp

Mk|Yk (ZBA,CCC,{BB ::%b) O(p((l}cﬂﬂg :ﬁb‘z3)p(z2|wAva)pz1(xA)v

with which we can proceed to compute the belief message myy (24, ).



10 Fourie et al.
5 Experimental Results

5.1 Simulation: Circular Example

Figure [4 shows a simulated trajectory where a robot travels counter clockwise
in one complete circle. Odometry is used to define pose to pose rigid transform
constraints. A small turn rate bias is added to stretch the dead reckoning circle
into a slightly bigger incomplete ring. A single landmark I; is observed from the
starting pose xo, and later re-observed at the last pose x19 (identical to ).
The experiment starts by driving halfway (poses x( through x5) and calculating
a solution, with an associated Bayes tree shown at the top right of Figure [4
Finally, travel for poses xg through a1 is completed and three distinct second
solutions are computed using three closely related strategies.

Solving the factor graph after adding poses xg-x19 shows the intimate rela-
tionship between marginalization and incremental updates [16]. The example is
used to showcase the five distinct strategies described in Section [£.4}

1. Batch Solution: The first row in Figure [4] shows a full batch solution
(Sections through of the first five poses with landmark l;, where all
messages are passed from the leaves to root and back down again.

2. Limited Down Pass, Tolerance or Priority: The designer may choose
at what priority or to what depth to propagate downward messages after an
upward pass. Rows 1, 3, and 4 of Figure [] perform complete downward message
passes, while row 2 force-marginalizes a tree branch (blue). When only a few
marginals are required, one could manipulate the variable ordering to have those
variables in the root and only send upward messages to solve those variables in
the root. Further work regarding task-specific variable orderings is forthcoming.

3. Upward Marginalization by Criteria: This strategy is a replace-
ment for the time complexity of conventional fixed-lag operation (i.e., forced
variable marginalization) but instead preserves the full factor graph with all
data, and only modifies the message passing on the Bayes tree. For example,
a naive variable marginalization approach where a fixed window of variables
are marked for marginalization based on the sequence they were added to the
factor graph, as shown by the shaded nodes in Figure [I] We call this a FIFO
marginalization strategy which is directly analogous to augmented or fixed-lag
filtering/smoothing. This approach is shown on the second row of Figure [4] with
the green trace as the second half and only updated portion of the factor graph.

4. Incremental Belief Propagation: Slight modifications to the factor
graph likely mean that major portions of the tree will be repeated. The iSAM2
algorithm [I7] specifically uses this fact by minimizing tree changes via variable
ordering constraints (using CCOLAMD [3]) by unhooking and rehooking large
parts of the tree after new information is incorporated. The third row in Figure[d]
illustrates an incremental update. Given our analysis in Section [ we can now
clearly identify the incremental operation as fundamentally equivalent to clique
marginalization. The authors stress that the equivalent fixed-lag smoothing con-
nection on the Bayes tree has to the best of our knowledge not been identified
or reported.



Marginalization on the Bayes Tree 11

Fig. 4. Canonical example of a robot trajectory with eleven poses driving counter clock-
wise in a circle with one landmark sighted at the beginning and end — i.e. constructing
a factor graph similar to Figure[l] Top row: first five poses after a batch solution with
associated Bayes tree. Second row: forced-marginalization for all but last five poses.
Third row: incremental tree update similar to iISAM2 [I7] with one reused clique in
orange. Fourth row: combined marginalized and incremental case. Green traces show
latest solution; gray traces show estimates before tree solve. Solutions were computed
with a nonparametric solver, multimodal-iISAM [2] [6] [7], with covariance ellipses fitted
(for visualization only). The marginalized-only tree was purposefully adjusted from
standard AMD variable ordering to show the marginalized-parent case; all other trees
are from standard AMD variable ordering.
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5. Combination of 2, 3, & 4: We define clique recycling as the case when,
during upward belief propagation, cliques are reused either from a previous in-
cremental update or being marked as marginalization due to some criteria. We
emphasize that this approach uses clique marginalization to focus resource uti-
lization, and does not require pre-processing of the factor graph.

5.2 Manhattan World Dataset

A larger scale analysis similar to the toy problem is carried out using the Man-
hattan world dataset. To quantify the relationship between a full incremental
smoothing approach and a tree-based marginalization strategy, the correspond-
ing number of cliques affected are compared at each update step. This metric is
additionally paired with the estimation accuracy achieved by each method, thus
comparing compute resources and performance.

The graphics in Figure[§]show a comparison between the same type of strate-
gies seen in Figure incremental belief propagation, Strategy 4 (iISAM2); b100
represents both forced marginalization and clique reuse (Strategy 5, Combina-~
tion of 2, 3, & 4), updating only the 100 most recent variables; similar for 520
and 010, with corresponding window sizes; and the batch solution (Strategy 1).

As expected, the incremental strategy very closely approximates the batch
solution, as it updates variables and incorporates loop closures as needed. As we
start to tradeoff accuracy for better time complexity, the estimated trajectory
naturally deviates from the reference. This is seen in Figure || (left), where the
smaller the smoothing window size, the greater the displacement. This hit in
accuracy mainly stems from the inability to incorporate loop closures outside
the marginalization window.

In turn, the benefit in compute resources from the tradeoff is represented
in Figure [5| (right), where the number of cliques to be updated at each time
step is shown. The strategies leveraging both recycled computations as well as
clique marginalization require fewer updates per time step, and avoid the sharp

batch = =

140 1 .
0 incremental
¢ b100
- batch 120 b20
-10 incremental ! b10
b100
b20 100 /

b10
80

-30
60

0 1 ,\/\
- R ey

0 200 400 600 800 1000

Number of cliques

-40

-50

Time step

Fig. 5. Trajectory estimates and time history of the number of clique operations for
the distinct tree-based inference strategies obtained using a the Manhattan dataset.
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Table 1. Statistics for the number of cliques updated at each time step corresponding
to the Manhattan scenario presented in Figure[5] with each row representing a different
strategy (total of 1,101 time steps). Units represent number of cliques.

Total updated Cliques updated per step
Strategy [cliques] Median Mean Stddev Max

Incremental 6,026 (100% 55.00 54.29 23.05 110.00
Both 100 2,919 (48.5% 28.50 28.89 10.17 56.00
Both 20 1,939 (32.2% 17.00 17.22 5.21 31.00
Both 10 1,575 (26.1% 13.00 14.19 4.63 25.00

~

NN

Table 2. Absolute position error statistics taken with respect to the batch solution for
different inference strategies (total of 1,101 time steps). Units represent meters. Table
data and plots computed using evo.

Total updated Trajectories absolute position error
Strategy [cliques] Median Mean Stddev Max RMSE SSE

Incremental 6,026 (100%) 0.23 0.275 0.186  1.203 0.332 82.91
Both 100 2,919 (48.5%) 0.421 0.496 0.312 1.685 0.586  346.216
Both 20 1,939 (32.2%) 0.496 0.529 0.265 1.791 0.592  364.233
Both 10 1,575 (26.1%) 0.628 0.622 0.248 1385 0.669  504.245

peaks seen by the incremental approach, triggered by the computational demand
to close big loops. The statistics for the time history of updated cliques for
all approaches are encapsulated in Table [I} whereas the corresponding absolute
position error statistics are included in Table[2] It is important to note that even
though some loop closures are not being incorporated by the marginalization-
driven approaches, they are still able to be detected. This capability comes from
keeping the entire, albeit partially “frozen,” tree, allowing data association. This
choice entails a greater space complexity, but affords on-demand asynchronous
updates using the available global structure of the problem and the recovery of
the full SLAM solution at any point.

Such an example is shown in Figure [6] After utilizing the “cheap” strategy
for a period of time, a window of inactivity opens up (robot standing still, car is
idling at a traffic light, etc) and the possibility to “rebase” the current state esti-
mates is presented. The full SLAM solution is computed by “releasing” messages
to the hitherto “frozen” cliques, and extracting their new potentials. Afterwards,
the system has the choice to operate in an incremental manner, set a marginal-
ization window, or fully filter—all choices easily accomplished by working with
simple marginalization operations directly on the Bayes tree.

The ability to explore the presented tradespace opens up an avenue for
designing flexible and adaptive inference strategies using the Bayes tree. Char-
acterization of the environment (e.g., how often do loop-closures tend to occur)
and knowledge of system requirements (e.g., need to operate above a precision
threshold), paired with the ability to seamlessly and trivially transition between
inference strategies (a set of simple operations and message passing schemes),
give rise to highly versatile inference algorithms. As shown in Figure [6 the
method offers flexibility to customize the best marginalization strategy to limit
the number of cliques to update.
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messages g 100
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previously marginalized: Time step

Fig. 6. On-demand loop closure to recover full SLAM solution from a marginalization-
based inference strategy. Top row: the effect of the loop closure is shown on the left,
and the resulting trajectory estimate obtained with or without the update is shown on
the right. Bottom row: a symbolic depiction of how the loop closure is incorporated
by releasing and collecting messages to and from the marginalized sections of the tree
is shown on the left; of the number of updated cliques is shown on the right, where
the green spike at time step 500 corresponds to the loop closure when the hitherto
solutions gets “rebased”.

6 Conclusions

This work intends to better formalize the inference problem definition for het-
erogeneous data fusion, SLAM, and state-estimation tasks, where the funda-
mental operation underlying most, if not all, existing methods is the Chapman-
Kolmogorov transit equation. This work provides a framework for developing a
variety of future SLAM algorithms beyond the well-known Gaussian minimiza-
tion approaches. By characterizing the marginalization operations on the Bayes
tree, we showed how the incremental update strategy of iISAM2 is a special case,
and how this work should allow designers more freedom to develop predictable,
resource constrained factor graph-style algorithms.
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