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Abstract. We develop a hybrid control approach for robot learning
based on combining learned predictive models with experience-based
state-action policy mappings to improve the learning capabilities of robotic
systems. Predictive models provide an understanding of the task and the
physics (which improves sample-efficiency), while experience-based pol-
icy mappings are treated as “muscle memory” that encode favorable ac-
tions as experiences that override planned actions. Hybrid control tools
are used to create an algorithmic approach for combining learned predic-
tive models with experience-based learning. Hybrid learning is presented
as a method for efficiently learning motor skills by systematically combin-
ing and improving the performance of predictive models and experience-
based policies. A deterministic variation of hybrid learning is derived
and extended into a stochastic implementation that relaxes some of the
key assumptions in the original derivation. Each variation is tested on
experience-based learning methods (where the robot interacts with the
environment to gain experience) as well as imitation learning methods
(where experience is provided through demonstrations and tested in the
environment). The results show that our method is capable of improv-
ing the performance and sample-efficiency of learning motor skills in a
variety of experimental domains.
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1 Introduction
Model-based learning methods possess the desirable trait of being being “sample-
efficient” [1, 2, 3] in solving robot learning tasks. That is, in contrast to experience-
based methods (i.e., model-free methods that learn a direct state-action map
based on experience), model-based methods require significantly less data to
learn a control response to achieve a desired task. However, a downside to model-
based learning is that these models are often highly complex and require special
structure to model the necessary intricacies [3, 4, 5, 6, 7, 8]. Experience-based
⋆ This material is based upon work supported by the National Science Foundation under Grants

CNS 1837515. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the aforemen-
tioned institutions. For videos of results and code please visit https://sites.google.com/view/
hybrid-learning-theory.
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methods, on the other hand, approach the problem of learning skills by avoiding
the need to model the environment (or dynamics) and instead learn a mapping
(policy) that returns an action based on prior experience [9, 10]. Despite having
better performance than model-based methods, experience-based approaches re-
quire a significant amount of data and diverse experience to work properly [2].
How is it then, that humans are capable of rapidly learning tasks with a limited
amount of experience? And is there a way to enable robotic systems to achieve
similar performance?

Some recent work tries to address these questions by exploring “how” models
of environments are structured by combining probabilistic models with determin-
istic components [2]. Other work has explored using latent-space representations
to condense the complexities [5, 6]. Related methods use high fidelity Gaus-
sian Processes to create models, but are limited by the amount of data that
can be collected [11]. Finally, some researchers try to improve experience-based
methods by adding exploration as part of the objective [12]. However, these ap-
proaches often do not formally combine the usage of model-based planning with
experience-based learning.

Those that do combine model-based planning and experience-based learning
tend to do so in stages [4, 13, 14]. First, a model is used to collect data for a
task to jump-start what data is collected. Then, supervised learning is used to
update a policy [13, 15] or an experience-based method is used to continue the
learning from that stage [4]. While novel, this approach does not algorithmically
combine the two robot learning approaches in an optimal manner. Moreover,
the model is often used as an oracle, which provides labels to a base policy.
As a result, the model-based method is not improved, and the resulting policy
is under-utilized. Our approach is to algorithmically combine model-based and
experience-based learning by using the learned model as a gauge for how well
an experience-based policy will behave, and then optimally update the resulting
actions. Using hybrid control as the foundation for our approach, we derive a
controller that optimally uses model-based actions when the policy is uncertain,
and allows the algorithm to fall back on the experience-based policy when there
exists high confidence actions that will result in a favorable outcome. As a result,
our approach does not rely on improving the model (but can easily integrate
high fidelity models), but instead optimally combines the policy generated from
model-based and experience-based methods to achieve high performance. Our
contribution can be summed up as the following:

– A hybrid control theoretic approach to robot learning
– Deterministic and stochastic algorithmic variations
– A measure for determining the agreement between learned model and policy
– Improved sample-efficiency and robot learning performance
– Diverse implementation using standard off-policy reinforcement learning [10]

and behavior cloning [16]

The paper is structured as follows: Section 2 provides background knowledge
of the problem statement and its formulation; Section 3 introduces our approach
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and derives both deterministic and stochastic variations of our algorithm; Sec-
tion 4 provides simulated results and comparisons as well as experimental vali-
dation of our approach; and Section 5 concludes the work.

2 Background

Markov Decision Processes: The robot learning problem is often formulated
as a Markov Decision process (MDP) M = {S, A, r, p}, which represents a set
of accessible continuous states s ∈ S the robot can be in, continuous bounded
actions a ∈ A that a robotic agent may take, rewards r, and a transition prob-
ability p(st+1 | st, at), which govern the probability of transitioning from one
state st to the next st+1 given an action at applied at time t (we assume a
deterministic transition model). The goal of the MDP formulation is to find a
mapping from state to action that maximizes the total reward acquired from
interacting in an environment for some fixed amount of time. This can also be
written as the following objective

π⋆ = arg max
π

Ea∼π(· | s)

[
T −1∑

t=0

r(st)

]

(1)

where the solution is an optimal policy π⋆. In most common experience-based
reinforcement learning problems, a stochastic policy a ∼ π(· | s) is learned such
that it maximizes the reward r at a state s. Model-based approaches solve the
MDP problem by modeling the transition function st+1 = f(st, at) and the
reward function rt = r(st)3, and either use the model to construct a policy
or directly generate actions through model-based planning [2]. If the transition
model and the reward function are known, the MDP formulation becomes an
optimal control problem where one can use any set of existing methods [17] to
solve for the best set of actions (or policy) that maximizes the reward (often
optimal control problems are specified using a cost instead of reward, however,
the analysis remains the same).

Hybrid Control Theory for Mode Scheduling: In the problem of mode
scheduling, the goal is to maximize a reward function through the synthesis of
two (or more) control strategies (modes). This is achieved by optimizing when
one should switch which policy is in control at each instant (which is devel-
oped from hybrid control theory). The policy switching often known as mode
switching [18]. For example, a vertical take-off and landing vehicle switching
from landing to flight mode is a common example used for an aircraft switching
from flight mode to landing mode. Most problems are written in continuous time
subject to continuous time dynamics of the form

ṡ(t) = f(s(t), a(t)) = g(s(t)) + h(s(t))a(t) (2)

3 We exclude the dependency on the action for clarity as one could always append the
state vector with the action and obtain the dependency.
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where f(s, a) : S ×A → S is the (possibly nonlinear) transition function divided
into the free dynamics g(s) : S → S and the control map h(s) : S → S × A,
and a(t) is assumed to be generated from some default behavior. The objective
function (similar to Eq.(1) but often written in continuous time) is written as
the deterministic function of the state and control:

arg max
τ,λ

J =
∫ tH

t=0
r(s(t))dt subject to ṡ(t) = f(s(t), a(t)), s(0) = s0 (3)

where

a(t) =

{
â(t), if t ∈ [τ, τ + λ]
adef(t) otherwise

, (4)

tH is the time horizon (in seconds), and s(t) is generated from some initial
condition s(0) using the model (2) and action sequence (4). The goal in hybrid
control theory is to find the optimal time τ and application duration λ to switch
from some default set of actions adef to another set of actions â that best improves
the performance in (3) subject to the dynamics (2).

The following section derives the algorithmic combination of the MDP learn-
ing formulation with the hybrid control foundations into a joint hybrid learning
approach.

Algorithm 1 Hybrid Learning (deterministic)
1: Randomly initialize continuous differentiable models f , r with parameters ψ and

policy π with parameter θ. Initialize memory buffer D, prediction horizon param-
eter tH , exploration noise ε.

2: while task not done do
3: reset environment and exploration noise ε
4: for i = 1, . . . , T do
5: observe state s(ti)
6: ⊲ simulation loop
7: for τi ∈ [ti, . . . , ti + tH ] do
8: ⊲ forward predict states using any integration method (Euler shown)
9: s(τi+1), r(τi) = s(τi) + f(s(τi), µ(s(τi)))dt, r(s(τi), µ(s(τi)))

10: end for
11: ⊲ backwards integrate using ρ̇(t) defined in (6)
12: ρ(ti + tH) = 0
13: for τi ∈ [tH + ti, . . . , ti] do
14: ρ(τi−1) = ρ(τi)− ρ̇(τi)dt
15: end for
16: a⋆(ti) = Σ(s(ti))h(s(ti))⊤ρ(ti) + µ(s(ti)) + ε(t)
17: ⊲ apply to robot
18: append data D ← {s(ti), a⋆(ti), rt, s(ti+1)}
19: end for
20: Update f, r by sampling N data points from D using any regression method
21: Update π using any experience-based method
22: end while
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3 Hybrid Learning
The goal of this section is to introduce hybrid learning as a method for optimally
utilizing model-based and experience-based (policy) learning. We first start with
the deterministic variation of the algorithm that provides theoretical proofs,
which describe the foundations of our method. The stochastic variation is then
derived as a method for relaxing the assumptions made in the deterministic
variation. The main theme in both the deterministic and stochastic derivations
is that the learning problem is solved indirectly. That is, we solve the (often
harder) learning problem by instead solving sub-problems whose solutions imply
that the harder problem is solved.

3.1 Deterministic

Consider the continuous time formulation of the objective and dynamics in (2)
and (3) with the MDP formation where f and r are learned using arbitrary
regression methods (e.g., neural network least squares, Gaussian processes), and
π is learned through a experience-based approach (e.g., policy gradient [19]).
In addition, let us assume that in the default action in (4) is defined as the
mean of the policy π where we ignore uncertainty for the time being4. That is,
adef(t) = µ(s(t)) is defined by assuming that the policy has the form π(a | s) =
N (µ(s), Σ(s)), where N is a normal distribution and µ(s), Σ(s) are the mean
and variance of the policy as a function of state. As we do not have the form of
a⋆, let us first calculate how sensitive (3) is at any τ to switching from µ(s) → a⋆

for an infinitely small λ5.

Lemma 1. Assume that f , r, and µ are differentiable and continuous in time.
The sensitivity of (3) (also known as the mode insertion gradient [18]) with
respect to the duration time λ from switching between µ(s) to â and any time
τ ∈ [0, tH ] is defined as

∂
∂λ

J (τ) = ρ(τ)⊤(f2 − f1)|τ (5)

where f1 = f(s(t), µ(s(t))) and f2 = f(s(t), â(t)), and ρ(t) ∈ S is the adjoint
variable which is the the solution to the the differential equation

ρ̇(t) = −
∂r
∂s

−

(
∂f
∂s

+
∂µ
∂s

⊤ ∂f
∂a

)⊤

ρ(t) (6)

with terminal condition ρ(tH) = 0.

Proof. See Appendix 1 for proof. ⊓⊔
4 We will add the uncertainty into the hybrid problem in the stochastic derivation of

our approach for hybrid learning
5 We avoid the problem of instability of the robotic system from switching control

strategies as later we develop and use the best action for all τ ∈ [0, tH ] instead of
searching for a particular time when to switch.
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Lemma 1 gives us the proof and definition of the mode insertion gradient (5),
which tells us the infinitesimal change in the objective function when switching
from the default policy behavior to some other arbitrarily defined control â for
a small time duration λ. We can directly use the mode insertion gradient to see
how an arbitrary action changes the performance of the task from the policy
that is being learned. However, in this work we use the mode insertion gradient
as a method for obtaining the best action the robot can take given the learned
predictive model of the dynamics and the task rewards. We can be more direct
in our approach and ask the following question. Given a suboptimal policy
π, what is the best action the robot can take to maximize (3), at any
time t ∈ [0, tH ], subject to the uncertainty (or certainty) of the policy
defined by Σ(s)?

We approach this new sub-problem by specifying the auxiliary optimization
problem:

a⋆(t) = arg max
â(t) ∀t∈[0,tH ]

∫ tH

0

∂
∂λ

J (t) + log π (â(t) | s(t)) dt (7)

where the idea is to maximize the mode insertion gradient (i.e., find the action
that has the most impact in changing the objective) subject to the log π term
that ensures the generated action a⋆ is penalized for deviating from the policy,
when there is high confidence that was based on prior experience.

Theorem 1. Assuming that f , r, and π are continuous and differentiable in
s, a and t, the best possible action that improves the performance of (3) and is a
solution to (7) for any time t ∈ [0, tH ] is

a⋆(t) = Σ(s(t))h(s(t))⊤ρ(t) + µ(s(t)) (8)

where ρ(t) is defined in (6) and h(s) : Rn → Rn×m is the affine mapping from
actions to the dynamics.

Proof. Inserting the definition of the mode insertion gradient (5) and taking the
derivative of (7) with respect to the point-wise â and setting it to zero gives

ρ⊤h(s) (â − µ(s)) − Σ(s)−1 (â − µ(s)) = 0

where we drop the dependency on time for clarity. Solving for â gives the best
actions a⋆

a⋆(t) = Σ(s(t))h(s(t))⊤ρ(t) + µ(s(t))

which is the action that maximizes the mode insertion gradient subject to the
certainty of the policy π for all t ∈ [0, tH ]. ⊓⊔

The proof in Theorem 1 provides the best action that a robotic system can
take given a default experience-based policy. Each action generated uses the sen-
sitivity of changing the objective based on the predictive model’s behavior while
relying on the experience-based policy to regulate when the model information
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Algorithm 2 Hybrid Learning (stochastic)
1: Randomly initialize continuous differentiable models f , r with parameters ψ and

policy π with parameter θ. Initialize memory buffer D, prediction horizon param-
eter H.

2: while task not done do
3: reset environment
4: for t = 1, . . . , T − 1 do
5: observe state st
6: ⊲ simulation loop
7: for k ∈ {0, . . . ,K − 1} do
8: for τ ∈ {0, . . . , H − 1} do
9: vkτ ∼ π(· | skτ )

10: ⊲ forward predict state and reward
11: skτ+1, rkτ = f(skτ , vkτ ), r(skτ , vkτ )
12: jkτ = rkτ
13: end for
14: end for
15: ⊲ update actions
16: for τ ∈ {0, . . . , T − 1} do
17: J (vkτ )←

∑
T−1
t=τ

jkt
18: δakτ ← vkτ − aτ
19: aτ ← aτ +

∑
K−1
k=0 ω(vkτ )δakτ

20: end for
21: apply a0 to robot and append data D ← {st, a0, rt, st+1}
22: end for
23: Update f, r by sampling N data points from D using any regression method
24: Update π using any experience-based method
25: end while

will be useful. We convert the result in Theorem 1 into our first (deterministic)
algorithm (see Alg. 1).

The benefit of the proposed approach is that we are able to make (numerically
based) statements about the generated action and the contribution of the learned
predictive models towards improving the task. Furthermore, we can even make
the claim that (8) provides the best possible action given the current belief of
the dynamics f and the task reward r.

Corollary 1. Assuming that ∂
∂a H 6= 0 where H = r(s)+log π(a | s)+ρ⊤f(s, a)

is the control Hamiltonian for (3), then ∂
∂λ J = ‖h(s)⊤ρ‖Σ(s) > 0 and is zero

when the policy satisfies the control Hamiltonian condition ∂
∂a H = 0.

Proof. Inserting (8) into (5) yields

∂J
∂λ

= ρ⊤ (g(s) + h(s)
(
Σ(s)h(s)⊤ρ + µ(s)

)
− g(s) − h(s)µ(s)

)

= ρ⊤h(s)Σ(s)h(s)⊤ρ = ‖h(s)⊤ρ‖Σ(s) > 0. (9)
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From Pontryagin’s Maximum principle, a solution that is a local optima of the
objective function satisfies the following

∂
∂a

H = −Σ(s)−1 (a − µ(s)) + h(s)⊤ρ = 0 (10)

when a = Σ(s)h(s)⊤ρ + µ(s) or ρ = 0. Therefore, if the policy π is a solution,
then it must be that the adjoint ρ = 0 and π a solution to the optimal control
problem (3). ⊓⊔

Corollary 1 tells us that the action defined in (8) generates the best action
that will improve the performance of the robot given valid learned models. In
addition, Corollary 1 also states that if the policy is already a solution, then our
approach for hybrid learning does not impede on the solution and returns the
policy’s action.

Taking note of each proof, we can see that there is the strict requirement of
continuity and differentiability of the learned models and policy. As this is not
always possible, and often learned models have noisy derivatives, our goal is to
try to reformulate (3) into an equivalent problem that can be solved without the
need for the assumptions. One way is to formulate the problem in discrete time
(as an expectation), which we will do in the following section.

3.2 Stochastic

We relax the continuity, differentiability, and continuous-time restrictions spec-
ified (3) by first restating the objective as an expectation:

max Ev∼π(· | s) [J (v)] (11)

where J (v) =
∑T −1

t=0 r(st) subject to st+1 = f(st, vt), and v = [v0, . . . vH−1]
is a sequence of H randomly generated actions from the policy π. Rather than
trying to find the best time τ and discrete duration λ, we approach the prob-
lem from an hybrid information theoretic view and instead find the best aug-
mented actions to π that improve the objective. This is accomplished by defin-
ing two distributions P and Q which are the uncontrolled system response
distribution6 and the open loop control distribution (augmented action dis-
tribution) described as probability density functions p(v) =

∏T −1
t=0 π (vt | st)

and q(v) =
∏T −1

t=0
1√

(2π)m|Σ(st)|
exp

(
− 1

2 (vt − at)⊤Σ(st)−1(vt − at)
)

respectively.

Here, π(a | s) = N (µ(s), Σ(s)) and q(v) use the same variance Σ(s) as the pol-
icy. The uncontrolled distribution P represents the default predicted behavior
of the robotic system under the learned policy π. Furthermore, the augmented
open-loop control distribution Q is a way for us to define a probability of an aug-
mented action, but more importantly, a free variable for which to optimize over
given the learned models. Following the work in [1], we use Jensen’s inequality
6 We refer to uncontrolled as the unaugmented control response of the robotic agent

subject to a stochastic policy π
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and importance sampling on the free-energy [20] definition of the control system
using the open loop augmented distribution Q:

F(v) = −λ log
(

EP

[
exp

(
1
λ

J (v)
)])

≤ −λEQ

[
log
(

p(v)
q(v)

exp
(

1
λ

J (v)
))]

(12)
where λ ∈ R+ here is what is known as the temperature parameter (and not the
time duration as used prior). Note that in (12) if p(v)

q(v) ∝ 1/ exp
( 1

λ J (v)
)

then
the inequality becomes a constant. Further reducing the free-energy gives the
following:

F(v) ≤ −λEQ

[
log
(

p(v)
q(v)

exp
(

1
λ

J (v)
))]

≤ −EQ

[
J (v) − λ log

(
p(v)
q(v)

)]

which is the optimal control problem we desire to solve plus a bounding term
which binds the augmented actions to the policy. In other words, the free-energy
formulation can be used as an indirect approach to solve for the hybrid optimal
control problem by making the bound a constant. Specifically, we can indirectly
make p(v)

q(v) ∝ 1/ exp
( 1

λ J (v)
)

which would make the free-energy bound reduce
to a constant. Using this knowledge, we can define an optimal distribution Q⋆

through its density function

q⋆(v) =
1
η

exp
(

1
λ

J (v)
)

p(v), η =
∫

Ω
exp

(
1
λ

J (v)
)

p(v)dv (13)

where Ω is the sample space.7 Letting the ratio be defined as p(v)
q⋆(v) gives us

the proportionality that we seek to make the free-energy a constant. However,
because we can not directly sample from Q⋆, and we want to generate a separate
set of actions at defined in q(v) that augments the policy given the learned
models, our goal is to push q(v) towards q⋆(v). As done in [1, 21] this corresponds
to the following optimization:

a⋆ = arg min
a

DKL (Q⋆ | Q) (14)

which minimizes the Kullback-Leibler divergence of the optimal distribution Q⋆

and the open-loop distribution Q. In other words, we want to construct a separate
distribution that augments the policy distribution p(v) (based on the optimal
density function) such that the objective is improved.

Theorem 2. The recursive, sample-based, solution to (14) is

a⋆
t = at +

∑

k

ω(vk
t )δak

t where ω(v) =
exp

( 1
λ J (v)

)
p(v)

∑
n exp

( 1
λ J (v)

)
p(v)

(15)

where k denotes the sample index and vt = at + δat.
7 The motivation is to use the optimal density function to gauge how well the policy
π performs.
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Proof. See Appendix 1 for proof ⊓⊔

The idea behind the stochastic variation is to generate samples from the
stochastic policy and evaluate its utility based on the current belief of the dy-
namics and the reward function. Since samples directly depend on the likelihood
of the policy, any actions that steer too far from the policy will be penalized
depending on the confidence of the policy. The inverse being when the policy
has low confidence (high variance) the sample span increases and more model-
based information is utilizes. Note that we do not have to worry about continuity
and differentiability conditions on the learned models and can utilize arbitrarily
complex models for use of this algorithm. We outline the stochastic algorithm
for hybrid learning Alg. 2.

4 Results

In this section, we present two implementations of our approach for hybrid learn-
ing. The first uses experience-based methods through robot interaction with the
environment. The goal is to show that our method can improve the overall
performance and sample-efficiency by utilizing learned predictive models and
experience-based policies generated from off-policy reinforcement learning. In
addition, we aim to show that through our approach, both the model-based
and experience-based methods are improved through the hybrid synthesis. The
second implementation illustrates our algorithm with imitation learning where
expert demonstrations are used to generate the experience-based policy (through
behavior cloning) and have the learned predictive models adapt to the uncer-
tainty in the policy. All implementation details are provided in Appendix 2.

Learning from Experience: We evaluate our approach in the deterministic
and stochastic settings using experience-based learning methods and compare
against the standard in model-based and experience-based learning. In addition,
we illustrate the ability to evaluate our method’s performance of the learned
models through the mode insertion gradient. Experimental results validate hy-
brid learning for real robot tasks. For each example, we use Soft Actor Critic
(SAC) [10] as our experience-based method and a neural-network based imple-
mentation of model-predictive path integral for reinforcement learning [1] as a
benchmark standard method. The parameters for SAC are held as default across
all experiments to remove any impact of hyperparameter tuning.

Hybrid learning is tested in four simulated environments: pendulum swingup,
cartpole swingup, the hopper environment, and the half-cheetah environment
(Fig. 1) using the Pybullet simulator [22]. In addition, we compare against state-
of-the-art approaches for model-based and experience-based learning. We first
illustrate the results using the deterministic variation of hybrid learning in Fig. 1
(compared against SAC and a deterministic model-predictive controller [23]).
Our approach uses the confidence bounds generated by the stochastic policy to
infer when best to rely on the policy or predictive models. As a result, hybrid
learning allows for performance comparable to experience-based methods with
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Fig. 1. Performance curves of our proposed deterministic hybrid learning algorithm
on multiple environments (averaged over 5 random seeds). All methods use the same
structured learning models. Our method is shown to improve the model-based bench-
mark results (due to the use of experience-based methods) while maintaining significant
improvements on the number of interactions necessary with the environment to obtain
those results. The mode insertion gradient is also shown for each example which illus-
trates the model-policy agreement over time and the improvement over time.
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Fig. 2. Performance curves of our proposed stochastic hybrid learning algorithm on
multiple environments (averaged over 5 random seeds). As shown before, our approach
improves both the sample-efficiency but also the highest expected reward. In addition,
the stochastic variation of the hybrid learning algorithm generates smoother learning
curves as a result of not requiring derivatives of learned models.

the sample-efficiency of model-based learning approaches. Furthermore, the hy-
brid control approach allows us to generate a measure for calculating the agree-
ment between the policy and the learned models (bottom plots in Fig. 1), as
well as when (and how much) the models were assisting the policy. The com-
monality between each example is the eventual reduction in the assistance of the
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learned model and policy. This allows us to better monitor the learning process
and dictate how well the policy is performing compared to understanding the
underlying task.
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Fig. 3. Hybrid learning with experience-based policy results on the Sawyer robot
(averaged over 5 trials). The task is to push a block to a designated target through
environment interactions (see time-series results above). Our method is able achieve the
task within 3 minutes (each episode takes 10 seconds) through effectively using both
predictive models and experience-based methods. The same amount of interaction with
SAC was unable to successfully push the block to the target.

We next evaluate the stochastic variation of hybrid learning, where we com-
pare against a stochastic neural-network model-based controller [1] and SAC.
As shown in Fig. 2, the stochastic variation still maintains the improved per-
formance and sample-efficiency across all examples while also having smoother
learning curves. This is a direct result of the derivation of the algorithm where
continuity and differentiability of the learned models are not necessary. In ad-
dition, exploration is naturally encoded into the algorithm through the policy,
which results in more stable learning when there is uncertainty in the task. In
contrast, the deterministic approach required added exploration noise to induce
exploring other regions of state-space. A similar result is found when compar-
ing the model-based performance of the deterministic and stochastic approaches,
where the deterministic variation suffers from modeling discontinuous dynamics.

We can analyze the individual learned model and policy in Fig. 2 obtained
from hybrid learning. Specifically, we look at the cartpole swingup task for the
stochastic variation of hybrid learning in Fig. 4 and compare against benchmark
model-based learning (NN-MPPI [1]) and experience-based learning (SAC [10])
approaches. Hybrid learning is shown to improve the learning capabilities of
both the learned predictive model and the policy through the hybrid control
approach. In other words, the policy is “filtered” through the learned model and
augmented, allowing the robotic system to be guided by both the prediction and
experience. Thus, the predictive model and the policy are benefited, ultimately
performing better as a standalone approach using hybrid learning.

Next, we apply hybrid learning on real robot experiments to illustrate the
sample-efficiency and performance our approach can obtain (see Fig. 3 for task
illustration). 8 We use a Sawyer robot whose goal is to push a block on a table
to a specified marker. The position of the marker and the block are known to
8 The same default parameters for SAC are used tor this experiment.



Hybrid Control for Learning Motor Skills 13

0 2000 4000 6000 8000 10000
environment interactions

200

100

0

100

200

ep
is

od
e 

re
w

ar
d

hybrid learning model only
hybrid learning policy only
model-based learning
model-free learning

Fig. 4. Performance curves for the in-
dividual learned model and policy on
the cartpole swingup environment dur-
ing hybrid learning (averaged over 10
trials). Our method is shown to improve
the capabilities of the model-based and
experience-based components through
mutual guidance defined by hybrid
control theory. Reference model-based
learning (NN-MPPI) and experience-
based learning (SAC) approaches are
shown for comparison.

the robot. The robot is rewarded for pushing the block to the marker. What
makes this task difficult is the contact between the arm and the block that the
robot needs to discover in order to complete the pushing task. Shown in Fig. 3
our hybrid learning approach is able to learn the task within 20 episodes (total
time is 3 minutes, 10 seconds for each episode). Since our method naturally relies
on the predictive models when the policy is uncertain, the robot is able to plan
through the contact to achieve the task whereas SAC takes significantly longer
to discover the pushing dynamics. As a result, we are able to achieve the task
with minimal environment interaction.
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Fig. 5. Results for hybrid stochastic control with behavior cloned policies (averaged
over 10 trials) using the Ant Pybullet environment (shown in a time-lapsed running se-
quence). Expert demonstrations (actions executed by an expert policy on the ant robot)
are used as experience to boot-strap a learned stochastic policy (behavior cloning) in
addition to predictive models which encode the dynamics and the underlying task of
the ant. Our method is able to adapt the expert experience to the predictive models,
improving the performance of behavior cloning and performing as well as the expert.

Learning from Examples: We extend our method to use expert demonstra-
tions as experience (also known as imitation learning [24, 25]). Imitation learn-
ing focuses on using expert demonstrations to either mimic a task or use as
initialization for learning complex data-intensive tasks. We use imitation learn-
ing, specifically behavior cloning, as an initialization for how a robot should
accomplish a task. Hybrid learning as described in Section 3 is then used as a
method to embed model-based information to compensate for the uncertainty
in the learned policy, improving the overall performance through planning. The
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specific algorithmic implementation of hybrid imitation learning is provided in
Appendix 2.
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Fig. 6. Hybrid learning with behavior cloning results on the Franka panda robot
(averaged over 5 trials). The task is to stack a block on top of another using expert
demonstrations. Our method is able to learn the block stacking task within three expert
demonstrations and provides solutions that are more repeatable than with behavior
cloning.

We test hybrid imitation on the Pybullet Ant environment. The goal is for the
four legged ant to run as far as it can to the right (from the viewer’s perspective)
within the allotted time. At each iteration, we provide the agent with an expert
demonstration generated from a PPO [9] solution. Each demonstration is used
to construct a predictive model as well as a policy (through behavior cloning).
The stochastic hybrid learning approach is used to plan and test the robot’s per-
formance in the environment. Environment experience is then used to update
the predictive models while the expert demonstrations are solely used to update
the policy. In Fig. 5, we compare hybrid learning against behavior cloning. Our
method is able to achieve the task at the level of the expert within 6 (200 step)
demonstrations, where the behavior cloned policy is unable to achieve the expert
performance. Interestingly, the ant environment is less susceptible to the covari-
ant shift problem (where the state distribution generated by the expert policy
does not match the distribution of states generated by the imitated policy [25]),
which is common in behavior cloning. This suggests that the ant experiences a
significantly large distribution of states during the expert demonstration. How-
ever, the resulting performance for the behavior cloning is worse than that of the
expert. Our approach is able to achieve similar performance as behavior cloning
with roughly 2 fewer demonstrations and performs just as well as the expert
demonstrations.

We test our approach on a robot experiment with the Franka Panda robot
(which is more likely to have the covariant shift problem). The goal for the robot
is to learn how to stack a block on top of another block using demonstrations
(see Fig. 6). As with the ant simulated example in Fig. 5, a demonstration is
provided at each attempt at the task and is used to update the learned models.
Experience obtained in the environment is solely used to update the predictive
models. We use a total of ten precollected demonstrations of the block stacking
example (given one at a time to the behavior cloning algorithm before testing).
At each testing time, the robot arm is initialized at the same spot over the initial
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block. Since the demonstrations vary around the arm’s initial position, any state
drift is a result of the generated imitated actions and will result in the covariant
shift problem leading to poor performance. As shown in Fig. 6, our approach is
capable of learning the task in as little as two demonstrations where behavior
cloning suffers from poor performance. Since our approach synthesizes actions
when the policy is uncertain, the robot is able to interpolate between regions
where the expert demonstration was lacking, enabling the robot to achieve the
task.

5 Conclusion

We present hybrid learning as a method for formally combining model-based
learning with experience-based policy learning based on hybrid control the-
ory. Our approach derives the best action a robotic agent can take given the
learned models. The proposed method is then shown to improve both the sample-
efficiency of the learning process as well as the overall performance of both the
model and policy combined and individually. Last, we tested our approach in
various simulated and real-world environments using a variety of learning con-
ditions and show that our method improves both the sample-efficiency and the
resulting performance of learning motor skills.
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