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Kinodynamic Planning for Terrain Environments:

Figure 1: (top-left) Experimental environment con-
structed using the Gravel Pit Lidar-Intensity Imagery
Dataset[1], which is generated from LIDAR scans of
a 1.1 km of a circuit. (top left) Satellite image of the
terrain based on which the dataset is generated [1].
(middle and bottom) Zoomed in images taken at vari-
ous points along the path.

Kinodynamic planning is a branch of motion plan-
ning where differential constraints are applied to the
motion of the robot. Constraints could include con-
straints on the direction of motion as well as up-
per an lower limits on velocity and acceleration.
Kinodynamic planning has application in mobile
robotics[2], autonomious driving[3], aerial vehi-
cles [4], grasping, manipulation, space exploration,
search and rescue and agricultural robots.

Kinodynamic planning is characterized by the
lack of a solution to the 2-point boundary problem
and consequently the lack of a steering function.
This makes many common motion planning algo-
rithms, such as the PRM [5] and RRT∗ [6] unsuit-
able for kinodynamic planning. We must therefore
rely on algorithms such as the RRT[7] which only
expand through forward propagation. Recent work
has focused on the development of asymptotically
optimal planners for systems without steering func-
tions, which has lead to the development of meth-
ods such as Stable Sparse RRT [8], AO-X [9] and
AO-RRT2 [10], and DIRT [11].

The lack of a steering function also makes it in-
fesiable to make use of heurestics such as cost-maps
during node expansion which means that most ex-
isting methods can only expand nodes by propagat-
ing random controls.

Physics and Terrain Environments Planning
in real-world physical environments is a difficult
open problem, due primarily to all of the factors
which can influence motion. In addition to dynamics, planning must incorporate factors such as friction,
gravity and the complex interactions between physical components of the robot. Terrain environments may
also include regions that are impassable and areas with rough or steep terrain that is difficult to traverse.
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Figure 2: Environments.

Figure 3: Success rate for system-order system.

Figure 4: Solution quality for second-order system.

They may even include areas such as ravines or pits where the robot can become trapped. Furthermore,
terrain environments may be extremely large (the Gravel Pit environment shown in Figure 1 consists of a
1.1 km circuit). Real world environments may also be unmapped, or not mapped in detail, which means that
a motion planner needs the ability to plan and re-plan based on the robot’s local observations.

Phyiscs simulators such as Bullet [12] and MuJoCo[13] have been developed to model physical en-
vironments and can be used to predict forward propagation during roadmap construction, however these
simulators do not provide a steering function or a solution to the two point boundary problem.

Application of Learning Kinodynamic Planning in Physical Terrains My current research focuses
on using learning to intelligently select controls to apply during forward propagation. In particular, I develop
a learned model which can be used as a surrogate for a steering function in order to obtain controls which
approximate reach a specified goal. This controller is parameterized on the robot’s state and the topology
of the terrain at the robot’s position. I train this controller in a set of sloped environments using the Soft
Actor-Critic (SAC) [14] architecture with Hindsight Experience Replay (HER) [15]. A variation of this
learned model can also be used as a cost-to-go.

One major advantage of this controller is that it only requires local knowledge of the environment in the
form of a tangent vector at the robot’s current position. In real-world robots this information can be obtained
from on-board sensors such as an inclinometer or from performing PCA on pointcloud representation of the
local terrain. This locality makes the terrain-aware controller well suited to real-world applications where the
robot may only know the local topology of the environment due to limited sensor range. This representation
is also advantageous because it reduces the terrain to three parameters which limits the complexity of the
controller.

I incorporate this model into the DIRT motion planning framework by using a wavefront function to
select local goals using the learned controller to do forward propagation. The wavefront can either be
generated from a cost-map of the environment or directly from the environment using the learned cost-to-go
distance metric.
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I apply this planner to a second order systems consisting of a RMP 440 LE robot in a variety of terrain
environments. These experiments (Figures 1–4) demonstrate that the terrain aware controller significantly
improves planner performance, with variations of the terrain-aware controller (SAC-Terrain-Wavefront and
SAC-Terrain-2-Step-Wavefront) solving four of the five environments more effeciently than other meth-
ods. SAC-Terrain-2-Step-Wavefront also finds better quality (lower cost) paths in four environments. These
results also show that the proposed wavefront function improves performance with methods using the wave-
front giving the highest success rate and lowest cost path in all five environments.

Motion Planning for High Degree of Freedom Problems and Constrained Sys-
tems

Figure 5: The reachable volume of a robotic arm
grasping a spherical object. An example configu-
ration is shown in gray.

Motion planning with constraints has applications
in parallel robotics [16], grasping and manipu-
lation [17], computational biology and molecu-
lar simulations [18], and animation [19]. Con-
strained motion planning problems place con-
straints on the motion of an object (robot).
These constraints might require that the robot
remain in contact with a surface or that it
maintain a specific clearance. They could
also require that certain joints of the robot re-
main in contact with each other (e.g., closed
chains). Such constraints could be used to
constrain the graspers of a manipulator to a
set of grasping positions, or handles. They-
https://www.sharelatex.com/project/5ae2d9ec8d13d5043f1f878d could also be used in industrial automa-
tion to constrain a tool mounted on a robot to a surface or a seam (for example, we could constrain a welder
mounted on a robot to a seam which needs to be welded). Constraints could also be used to simulate contacts
or bindings in protein folding simulations.

Sampling-based motion planning methods such as the graph-based PRM [5] and the tree-based RRT
[7] are state of the art solutions to traditional motion planning problems. Unfortunately, these methods
are poorly suited for many constrained problems where the constraints form a manifold in C-space and
planning must be restricted to this manifold [20]. Previous methods have developed specialized samplers
that generate samples that satisfy constraints [21, 22, 23] that can be used in combination with existing PRM-
based methods to solve problems with constraints. However, these methods are either unable to handle high
degree of freedom (dof) systems or unsuited for systems with spherical or prismatic joints or systems that
combine different types of joints.

Motion Planning with Reachable Volumes: The primary focus of my thesis work is motion planning
for high degree of freedom robot and motion planning for highly constrained systems. I introduce the
concept of Reachable Volumes [24], which are a geometric representation of the regions the joints and end
effectors of a robot can reach, and use it to define a new planning space called RV-space where all points
automatically satisfy a problems constraints. Samples and paths generated in RV-space naturally conform
to constraints, making planning for constrained systems no more difficult than planning for unconstrained
systems. Consequently, constrained motion planning problems that were previously difficult or unsolvable
become manageable and in many cases trivial.
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(a) (b) (c) (d)

Figure 6: The reachable volumes (a) of a 4 link chain with spherical joints with its end effector
constrained to a point. The reachable volumes of a 16 dof fixed-base grasper with spherical joints
is affected by constraints placed either (b) on the end effectors to be within spherical regions of the
object or (c) on the base to be at a point. Note that in (c) the end effector reachable volumes are
identical so only one is shown. The reachable volume (d) of a closed chain with 4 spherical joints and
4 links of equal length. The first and third joints can reach any point along the inner sphere (green)
while the second joint can reach any point inside the outermost sphere (blue). Example configurations
shown in red and yellow (d).

The reachable volume of a joint/end effector is the volume of RV-space it can reach while satisfying
a problem’s constraints. Reachable volumes generalize the concept of reachable distances [25] so that it
can be applied to linkages, closed chains and tree-like robots with prismatic and spherical as well as planar
joints. Furthermore, reachable volumes allow constraints to be placed on any combination of joints and end
effectors, and for multiple constraints to be applied at the same time. Most previous work focuses solely on
end effector constraints.

Visualizations of reachable volumes have applications in robot control and operation where they can
assist an operator by showing them what regions their robot can reach from a given location. This will help
them to decide where and how to position the robot to accomplish their goal. For example, they could show
the operator of a grasper where they need to position their robot in order to grasp and manipulate an object.
They can also assist in robot design by indicating whether the robot can reach parts of the environment that it
needs to in order to accomplish it’s task. Figures 4 and 6 show examples of reachable volumes for a variety
of robots.

My work also introduces tools and techniques to extend the state of the art sampling based motion plan-
ning algorithms to RV-space. We proposed a reachable volume sampler, a reachable volume local planner
and a reachable volume distance metric. Reachable volume sampling generates samples by iteratively sam-
pling the joints of a robot in their reachable volumes, resulting in samples which are guaranteed to satisfy
a problems constraints. It can solve problems with constraints applied to any combination of joints/end
effectors, while most other methods (e.g. [26, 23, 27]) assume a single constraint, usually on one of the
end effectors. The reachable volume local planner and distance metric can be be used to generate constraint
satisfying local paths, even in problems such as closed chains where the constraints form a manifold. As part
of the reachable volume local planner we present a novel method for stepping reachable volume samples to
generate samples that are close to the original while ensuring they satisfy the problem’s constraints.

Further adaptations of reachable volumes [28] allow them to be used to construction RRTs. The resulting
Reachable Volume RRT (RVRRT) constructs an RRT in RV-space, resulting in paths that are guaranteed to
satisfy the constraints. RVRRTs are capable of solving many high degree of freedom and highly constrained
problems that RRTs have previously been unable to solve.
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The geometric complexity of reachable volumes is O(1) in unconstrained problems as well as for many
constrained problems. This allows us to generate samples in linear time with respect to the number of
bodies in the robot, which is the best possible complexity for a sampler. In problems with more complex
constraints, samples can be generated in O(|L|2 |S| Complexity(S)) time (where S is the set of constraints

Figure 7: Fetch robot manipulating notebooks

and |L| is the number of bodies in the robot). The
reachable volumes of all of the joints/end effectors
in a robot can be computed in O(|J |*diameter(R))
time, where |J | is the number of joints in the robot
and diameter(R) is the diameter of the robot. This is
superior to O(|J |2) time that would be required to
compute these reachable volumes separately. Fur-
thermore, roadmaps generated using reachable vol-
ume sampling are probabilistically complete.

In [29], we extended the concept of reachable
volumes to accommodate rotational joints and di-
rectional constraints. To facilitate this we intro-
duced the concept of directional reachable volumes
which expands the concept of reachable volumes to include direction and orientation. We proposed a di-
rected reachable volume planning space and presented methods for computing directed reachable volumes
and using them to generate constraint satisfying samples. We showed that directional reachable volumes
could be applied to real world grasping and manipulation problems such as those shown in Figure 7.

Motion Planning for Manipulation Affordances:

Affordances provide a natural means for a robot to reason about its environment and the universe of actions
available to it. Planning for affordances has applications in areas such as eldercare, manufacturing, and
interplanetary exploration.

In order to accommodate affordances, the robot must be able to produce motions that interact with
the objects associated with the affordance. These motions must be robust to obstacles in the environment,
and they must be able to accommodate any constraints associated with the affordance. To address this
problem, we present the concept of affordance wayfields which represent affordances as a cost field over
workspace or c-space. We then apply gradient descent planning in wayfields in order to generate motion that
enact affordances. Affordance wayfields are advantageous in that they can adapt to obstacles and they can
accommodate problem specific constraint. We showed that affordance wayfields were able to solve complex
tasks such as those shown in Figure 8.

Addressing motion planning fundamentals:

In another project, I studied how different neighborhood selection methods effected PRM constructed. I first
evaluated how neighborhood selection methods such as kd-trees and metric trees effected PRT construction
time. I then studied how approximate methods such as Spill Trees and DPES effected roadmap quality.
This work showed that using approximate neighborhood finders could reduce roadmap construction time
significantly for roadmaps with a large number of nodes, and that roadmaps constructed using approximate
methods are similar in quality to those constructed using exact methods.
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(a) driving a screw (b) opening a drawer (c) screwing in a table
leg

Figure 8: Affordnaces

(a) (b) (c)

Figure 9: LocalRand Neighbor Selection: The LocalRand method first locates the k’ closest nodes to
a sample then selects k of those nodes at random. In this example, LocalRand selects the 5 (green)
closest nodes to the sample (red). It then selects 3 (purple) of those nodes at random and attempts to
connect them to the sample (green and red edges).

I next studied how introducing randomness to neighbor selection effects roadmap quality [30]. The
results of this work indicate that introducing some randomness into neighbor selection resulted in roadmaps
that were better connected. As part of this work, I introduced a method called LocalRand (Figure 9) which
finds a set of nodes that are close to a sample then selects a subset of these nodes at random. I showed
experimentally that LocalRand is able to produce better connected roadmaps than the existing methods such
as K-Closest, while maintaining a similar cost.

Future Directions:

I intend to continue working on general motion planning and kinodynamic planning with the objective
of further developing tools to better solve motion planning problems and exploring novel applications for
motion planning methods. I also plan to continue working on applications of machine learning to motion
planning and kinodynamic planning. The next steps in my research will be to further develop the work I
am doing on kinodynamic planning for terrains by applying it to more complicated terrains and to different
types of robots. I also plan to further develop reachable volumes and to apply them to real world problems.
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I will also continue developing methods for applying the concept of affordances to task and motion plan-
ning. I also see myself potentially branching out into areas such as belief space planning, parallel robotics,
computational geometry and computational biology.

Expansion of Work in Kinodynamic Planning for Terrains My next immediate step will be to look
at different methods for generating local goals. In particular, I plan to develop learning based methods for
identifying local goals in terrain environment. Such a method can be used in combination with the terrain-
aware controller that I have developed.

(a) (b)

Figure 10: a) Robomantis legged robot b) NASA
tensegrity robot

I am also in the process of developing a ver-
sion of the terrain-aware planner which only does
planning over local terrain. This planner will main-
tain a local window of terrain around the robot in
which it does planning, while applying a high-level
representation of the environment (such as a cost-
map or low-resolution heightmap) to generate local
goals. The main bottleneck with the terrain-aware
planner is the cost of simulating large, complex en-
vironments, and only needing to simulate a window
of the environment will greatly increase the size and
resolution of environments the planner can handle.
This method will also allow us to apply the terrain-
aware planner to real-world applications where the
robot only has high-resolution information about the portion of the terrain it can observe with its sensors.

I also plan to develop a variation of the terrain-aware controller that takes into account types of terrain
(e.g. pavement, grass, sand, ect.). A controller which takes into account terrain composition will be better
able to select appropriate controls and should give better performance in environments with different types
of terrain.

Finally, I plan to apply my methods to different types of robots. In particular, I would like to develop
a terrain-aware controller that can be used by legged robots such as the robomantis (Figure 10(a)). I would
also like to try applying my method to unique robots such as NASA’s tensegrity robot (Figure 10(b)).

Further Development of Reachable Volumes: My next objective will be to develop a probabilistic
reachable volume where the reachable volumes of joints are represented by probability distributions. Prob-
abilistic reachable volumes will give us the ability to track the position of joints as probability distributions
while enforcing constraints. We foresee them being applied to medical robotics such as steering needles
where there is a great deal of uncertainty in the environment and the motions of the robot. We also see them
being applied to industrial and home robotics where lower cost, mass produced robots may not be as precise
as those encountered in the lab, requiring methods that adapt to noise in robot motion. Probabilistic reach-
able volumes allow is to do planning under uncertainty for manipulators and articulate robots. They also
have applications in belief space planning and could be used to apply SLAM-based methods to articulated
robots.

Applications of Reachable Volumes: Another area of future research is to explore applying reachable
volumes to other problems. I am particularly interested in applying it to computational biology problems
such as protein folding. These problems have a large number of degrees of freedom, and are well suited
for reachable volumes. To facilitate this I intend to collaborate with bio-medical researchers and with re-
searchers in the drug industry. I also expect that the bio-medical applications of my work will will help me
to obtain funding from pharmaceutical companies and from organizations such as the National Institute of
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Health.
I would also like to explore applying reachable volumes to folding robots. Motion planning for folding

robots has applications in areas such as deformable materials (eg. shape-memory alloys).
I also plan to explore how reachable volumes can improve control and interaction with high degree of

freedom robots. This will involve further development of the reachable volume visualization tool so it can
be used to provide feedback that will assist in robot control. It will also involve applying reachable volumes
and reachable volume sampling to user guided motion planning where reachable volumes can be used to
guide planning and provide feedback.

Task Planning with Manipulation Affordances: Affordances provide an atomic representation of
actions that could be used for high level task planning. I plan to explore combining the motion planning tools
I developed for affordance with high level task planning methods in order to produce complex sequences of
motions needed to solve complicated, multi-step tasks.
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